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1 Introduction

The joint project ICON (ICOsahedral Nonhydrostatic model) initiated by the Max
Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD)
aims at developing a new coupled atmosphere-ocean modeling system for global numeri-
cal weather prediction (NWP) and climate research.

The horizontal grid is constructed from an icosahe-
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Fig. 1: Triangular ICON-grid with
two-way static mesh-refinement.

dron inscribed inside the unit sphere which provides a
quasi-uniform coverage of the sphere, thus solving the
pole problem. Two types of staggered C-grids are cur-
rently implemented, using either triangles or hexagons
as primal grid. The triangular version allows for static
local mesh-refinement, which is necessary for high res-
olution simulations in NWP or regional climate appli-
cations. At each refinement level, the so called parent
triangles are split into 4 child triangles via bisection
of the parent edges (see Fig. 1).

Key aspects of the nonhydrostatic model version will
be presented, putting special emphasis on our recent
developments regarding transport schemes for passive tracer variables.

2 Flux-form semi-Lagrangian transport

We implemented a finite-volume flux-form semi-Lagrangian (FFSL) conservative trans-
port scheme on the triangular mesh. It is similar to the 2D second order scheme of Miura
(2007), which was originally presented for icosahedral-hexagonal meshes. Here, we pursue
a higher order extension of the latter scheme on triangles.

The scheme is based on a finite-volume (or cell integrated) version of the 2D mass conti-
nuity equation and can be written as
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Overbars denote control volume averages and se
i = sgn (~v · ~n) indicates inflow/outflow.

The surface integral on the r.h.s denotes the total (time integrated) flux of mass through
edge e of the Eulerian control volume Ai. As shown in Fig. 2 for e = 1, this corresponds
to the mass in the shaded “departure region” a1

i that is swept through the edge during
∆t.



The overall accuracy of FFSL schemes strongly depends on two choices to be made:

the approximation of the unknown scalar sub-

Fig. 2: Eulerian cell Ai with departure re-
gion a1

i and rhomboidal approximation ac-
cording to Miura (2007) (dashed).

grid distribution Ψn(x, y) and the approximation
of the “departure region” ae

i . Miura (2007) as-
sumes rhomboidally shaped departure regions as
depicted in Fig. 2. For Ψn(x, y) he uses 2D poly-
nomials of degree 1 (linear), and neglects that the
departure region may reach beyond the Eulerian
cell for which the polynomial is constructed. In
order to increase the formal order of accuracy of
Miura’s scheme from second to third order, both
the reconstruction and the approximation of the
departure region would have to be improved. Im-
provements to the departure region, however, ap-
pear to be too costly for operational NWP applications. Therefore we investigated possi-
ble advantages of a quadratic instead of a linear least squares reconstruction for Ψn(x, y),
while retaining Miura’s approximation to the departure region.

3 Results

Figure 3 shows results for the solid body rotation test case described in Williamson (1992),
where a cosine bell is transported once around the sphere in a time independent and non-
deformational flow field. It can be seen that the errors are much more symmetrically
distributed when using a quadratic (b) instead of a linear (a) reconstruction. Moreover,
the quadratic reconstruction shows markedly improved convergence rates (Fig. 4).

Fig. 3: Scalar field and error after 1 revolution for
(a) linear and (b) quadratic reconstruction.

Fig. 4: L2 and L∞ error norms for linear and
quadratic reconstruction (CFL ≈ 0.25).
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A more detailed comparison in terms of local accuracy, shape-preservation, stability and
computational efficiency will be presented, including results of a more challenging defor-
mational flow test case.
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