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1. Introduction

 The main purpose of this study is to examine the effects of elasticity  on the free internal and 
forced external modes. Our methodology is based on the analysis of the linear solutions of 
selected systems with varying degrees of elasticity.  These systems are the nonhydrostatic fully-
compressible (FC), nonhydrostatic unified (UN), quasi-hydrostatic (QH), nonhydrostatic pseudo-
incompressible (PI) and nonhydrostatic anelastic (AN) systems. The FC used in many 
nonhydrostatic models (e.g. Satoh et al., 2008 and others) is fully-elastic and permits acoustic 
waves. The UN of Arakawa and Konor (2009) and the QH provide elasticity, but filter the 
vertically propagating acoustic waves of all scales. The PI and AN are anelastic and exclude all 
effects of elasticity to filter all types of acoustic waves (e.g. Smolarkiewicz et  al., 2001 and 
others). 

2. Results

 Arakawa and Konor (2009) present a normal mode analysis on an f-plane without  the 
quasigeostrophic approximation and on a midlatitude β-plane with the quasigeostrophic 
approximation. Fig. 1 shows the dispersion of quasigeostrophic modes obtained by  the elastic 
systems, i.e. FC, UN and QH, and the anelastic systems, i.e. PI and AN. The most important 
difference between the results of the elastic and anelastic systems appears in the barotropic 
modes. The elastic systems produce the “compressible” Rossby waves that have a bounded 
retrogression speed – the speed is defined as c ≡ ν k – (Fig. 1a) while the anelastic systems 
produce the “incompressible” Rossby waves that have an unbounded retrogression speed given 
by c ≡ −β k2  (Fig. 1b). Thus, the anelastic systems may produce ultra long waves with a very 
high retrogression speed that is not seen in Nature.

Fig. 1. Frequencies (ʼs) of normal modes on a midlatitude β-plane with the quasigeostrophic 
approximation as functions of horizontal wavenumber k for (a) the fully compressible, unified, and quasi-
hydrostatic, (b) pseudo-incompressible, and (c) anelastic systems. In these figures, n  is the vertical 
wavenumber of the baroclinic modes.  Green dashed line shows the dispersion of the barotropic modes 
(Rossby waves).
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 To examine the effects of elasticity on the forced modes, we first define the elasticity ε  as

  ε ≡ 1 VMF( ) ∂ρ ∂t( ) = HMF VMF( ) +1 , (1)

where VMF [ ≡ ∂ ρw( ) ∂z ] is the convergence of vertical mass flux, ρ is the density, w is the 
vertical velocity, HMF [ ≡ ∇H ⋅ ρv( ) ] is the convergence of horizontal mass flux, ∇H is the 
horizontal del operator, and v is the horizontal velocity.  Fig. 2 shows the elasticity as a function 
of the vertical wavenumber n for the forced modes with the horizontal wavenumbers between 
k=10–5 m–1 and 10–7 m–1 on an f-plane obtained by  the elastic systems, i.e. FC, UN and QH, (Fig. 
2a) and the anelastic system (Fig. 2b).  Note that the vertical wavenumber is not an integer for 
the forced modes. With the elastic systems, the horizontal mass convergence (or divergence) 
associated with the very deep modes is 
partially compensated by the vertical 
mass divergence (or convergence) 
because the elasticity absorbs a large 
portion of the horizontal mass con-
vergence (or divergence). The singularity 
appears in Fig. 1a because the vertical 
mass convergence changes sign for the 
deep  modes. With the anelastic system, 
the horizontal mass convergence (or 
divergence) associated with all modes is 
completely compensated by the vertical 
mass divergence (or convergence).

4. Conclusions

 From the results of analyses, it  can be 
concluded that elasticity  is needed for accurate simulations of the dispersion (and retrogression 
speed) of ultra long waves. The effects of elasticity is also important for very deep forced modes.  
If an anelastic system is used in a global model, an ad hoc elasticity  needs to be added in the 
discretization step to avoid errors in ultra long waves and deep forced modes.   
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Fig. 2. Elasticity of forced modes. See text for explanation.


