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1. Introduction

When the system governing the rotating fluids is-hgdrostatic, the horizontal
component of the Coriolis force, which is omittetar the so-called "traditional
approximation”, is revived. Since this term causesxpected effects on the fluid
motion when boundaries are placed, for exampléheatop and bottom of the domain, it
is necessary to investigate sophisticatedly its ool the fluid motion. Here, we focused
on the symmetric motion, i.e. the transversal nmiiothe sheared zonal flow under
both ambient rotation and stratification, and tryahalyze the particular motion caused
by the top and bottom boundaries under full Casitdirce.

2. Governing equations
The Boussinesq equations linearized around thel #omaU(y,z) which has botly-
andz-, i.e. northward and vertical, directions are ulgdhe analysis. By introducing

the stream function?, defined to be'= 7 ¥/ Jz, w'= 7 ¥/ Jy wherev’' andw’
indicate the northward and vertical componenthefgerturbation velocity,
respectively, they can be combined into a singleagqgn as follows:
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wheret denotes time\ the buoyancy frequency, afidandfy indicate vertical and
horizontal component of the planetary vorticityspectively.

3. Solution under thetop and bottom rigid boundaries
Imposing rigid boundary conditions at the top a@ottom of the domain, i.e?Z=0 at

z=0 andH, the solution of (1) is obtained as follows:
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W =F? +%(N'2—Fz)sinz)('i\/[%(N'z—F2)sin2)(]2 +Stsinty (3

where sin v '=1/[(n z/H)?+72and n=1,2,3, - - -. Different from the unbounded case,
where the dispersion relation is quadratic of the angular frequency «(Itano and
Maruyama, 2009), the quartic equation on « and the corresponding four modes are
obtained in this bounded case as already reported in the studies on IGW undeh su
slantwise ambient rotation(Thuburn et al., 2002sdtwra, 2003) and the symmetric
instability under the traditional approximation(>X2007).

4. Properties of the eigen modes and the discriminant of the symmetric instability
By differentiating (3) with |sin '|, we get
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where L=(N? - F9)sin? y '+25¢(=0). Thus, «+A » 9 is a monotonically increasing

(4)

(decreasing) function of |sin y ’| where its maximum and minimum occur at | sin z |

=1(0) and 1), respectively. From (4), the following inequality is obtained:
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The inequality (5) indicates a couple of high freqay modest- » -) is super-inertial,
and that of low frequency modes(» ) is sub-inertial. Meanwhile, according to (6),
whenD is positive, « min? becomes negative so that the low frequency mooidlsl be
unstable. Therefor® is proven to be the discriminant of the symmatrstability.

Note that o max?, wmin? andD are identical to those in the unbounded case.

5. Essential dimensionless numbers

Two of three dimensionless numbers defined asatie of three parameters appeared
in (1), i.e. /9% (N'/F)? (SIN)? completely determine the fundamental nature of the
symmetric motion and stability regardless of thermary conditions and the existence
of f. Here, F/9? indicates the elevation angle of the constant nmume surface and
N'/F the geometrical ratio of the frequency of the ggawave to the frequency of the
inertial wave in the case of including both veitiead horizontal shears of the basic
flow.lt is possible to construct a stability diagravith such two dimensionless numbers.



