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1. Introduction

We discuss the computational design of an anelastic vector-vorticity dynamical core 
(VVDC) implemented on a spherical icosahedral grid. The prognostic variables for this 
model are the horizontal and vertical components of vorticity. The horizontal vorticity  is 
predicted at all levels. To enforce the non divergence of the 3D vorticity vector the 
vertical component of vorticity is predicted only in the top  layer and diagnosed   
throughout the remainder of a model column.  The vertical velocity  is obtained as the 
solution of a three-dimensional elliptic equation. This work is an extension to the sphere 
of the model originally designed for a Cartesian grid by Jung and Arakawa (2008).

2. Model description

We define the three-dimensional vorticity  and velocity in terms of their horizontal 
and vertical components ω ≡ η+ζk  and V ≡ v + wk . The prognostic equations for the 

horizontal and vertical components of vorticity are given by
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where B represents buoyancy. Note that the pressure gradient term has been eliminated 
from these equations.  The thermodynamic equation is given by
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where ρ0 ≡ ρ0 z( ) is a horizontally uniform density, and Q is the heating per unit mass.

The vertical velocity is determined by solving an elliptic equation of the form
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with the boundary conditionswS = wT = 0  at the lower and upper boundaries.

(1)

(2)

(3)

mailto:ross@atmos.colostate.edu
mailto:ross@atmos.colostate.edu


The horizontal structure of the model is based on an 
icosahedral grid, Fig. 1. The grid is constructed from an 
icosahedron through recursive bisection and 
subdivision. This provides almost  homogeneous 
discretization and quasi-isotropic resolution over the 
sphere. The horizontal component of vorticity is 
defined at cell edges, the vertical component of 
vorticity is defined at cell corners, and potential 
temperature is defined at cell centers.

3. Numerical Results

To test the model we have performed a buoyant warm bubble experiment. For 
computational expediency the Earth’s radius is reduced to 3633 m.  This allows for cells 
with a 250 m horizontal extend using a global grid with 10242 cells.  The model top is 
placed at 15000 m.  With 100 model layers the aspect ratio of the cells in nearly unity. 
For these tests the Earth is not rotating.

The initial potential temperature is 
given by θ = θ0 + ′θ  where θ0 = 300K
and

′θ =Max 0, 1− r
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wherer1 = 2500m , z0 = 4000m  and

z1 = 2000m . The initial vorticity is 

given by  η ≡ 0 andζ ≡ 0 .Fig 2 shows 

cross sections of the time evolution of 
the rising bubble.
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Figure 1. An Icosahedral 
grid with 642 cells

Figure 2. Rising buoyant bubble. The contour 
interval is 0.1 K
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