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1. Introduction

Recently, more frequent numerical experiments
of flow over complex terrain have been performed.
In such simulations, the Cartesian system repre-
sents the effects of the curved boundary unsatisfac-
torily, since it resolves the slope of the boundary into
steps. It has therefore been considered that a solu-
tion to this problem is a coordinate transformation
such that a coordinate surface or a curve follows the
boundary. On the other hand, use of an orthogo-
nal system is more desirable than a non-orthogonal
system because the truncation error increases with
the departure from orthogonality. We can construct
two-dimensional coordinate systems which satisfy
the above two conditions: the orthogonality and the
coincidence with the boundary shape (for example,
Sahasi 1981; Ryskin and Leal 1983; Sharman et al.,
1988). In three dimensions, however, we cannot gen-
erate orthogonal systems which follow an arbitrary
boundary shape (Eiseman, 1982). A practical so-
lution of the boundary problem is then to gener-
ate non-orthogonal (but not far away from the or-
thogonality) coordinates whose coordinate surfaces
fit. given boundaries.

In meteorological numerical simulations, two
transformations of the vertical coordinate have been
widely used: the z* coordinates introduced by Gal-
Chen and Somerville (1975) and the ¢ coordinates
proposed by Phillips (1957). In z* coordinates, only
the vertical coordinate is transformed to fit the lower
boundary (i.e., the terrain) and, in the o coordi-
nates, the vertical coordinate is replaced by the hy-
drostatic pressure normalized by the surface pres-
sure. These are terrain-following coordinates, but
the coordinate lines emitted from the terrain are ver-
tical. They have, therefore, the disadvantage that
finite-difference error would be large over the steep
terrain.

Aeronautical engineers have developed techniques
which generate grid points with desired characteris-
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tics around objects of complex shape. An extensive
review was given on this subject by Thompson et
al. (1982) and by Thompson (1984). Using these
techniques, we can generate coordinate lines which
start from the three-dimensional boundary nearly at
right angles. In this paper, one of these generation
techniques, called a variational grid generation, will
be adapted to mountain-wave simulations and some
preliminary results will be shown.

The geometric transformation introduced to sim-
plify the boundary condition changes the govern-
ing equations into complicated forms. The Poisson
equation which diagnostically determines the pres-
sure in the anelastic systems is also complicated
(e.g., Clark, 1977) and direct Poisson solvers are
impractical. This latter point obliges us to use it-
erative solvers which consume much computer time.
We will therefore use the elastic systems as basic
equations as shown in the next section. In addition,
it will be shown that we can simplify the equations
by choosing Cartesian velocity as dependent vari-
ables. The numerical grid generation method, which
was proposed by Brackbill and Saltzman (1982), will
be described in section 3. The results of numerical
experiments will be shown in section 4. The detailed
numerical schemes will be found in appendix.

2. Model equations

We confine the analysis of the present article to
two-dimensional coordinates for simplicity of pre-
sentation. The technique employed herein is easily
extended to three dimensions.

a. Cartesian systems

The momentum, thermodynamic and continuity
equations may be written in two dimensions as fol-
lows:
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where (4,1) are the contravariant components of
Ri = N? (2.12) the velocity in the transformed base vectors and
T A4+ B2’ ) (u,w) are the Cartesian velocity using (£, ¢) as in-

k=0.25 (Clark, 1977}, and Kg/Kap=3 (Deardorff,
1972).

b. Curuvilinear sysiems

Terrain can be incorporated in the model by a
transformation from Cartesian coordinates (x,z) to
curvilinear coordinates (£, (),

dependent variables.

Given the transformation function (2.13), the gov-
erning equations (2.14)—(2.17) are solved numeri-
cally. For practical purposes, we need
not know the functional form of the transformation
(2.13). It is sufficient that grid positions are known

however,
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in both the Cartesian and the curvilinear coordi-
nates, because we approximate the metric terms by
finite differences.

3. Numerical grid generation

We use the grid generation technique formulated
as a variational problem. This formulation was pro-
posed by Brackbill and Saltzman (1982) and is rep-
resented here for readers’ convenience. Please refer
to the original paper for detail.

Define three integrals as measures of global

“smoothness of the transformation I, orthogonality
I,, and weighted volume variation I,:

I, :/D{(vg)2+(vg)2}dD, (3.1)
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where w=w(z,y) is a given weight function that
determines the variation of the cell volume and
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Ay and A, are parameters of relative importance
of the three properties, AL is a characteristic grid
length. The term AL~4 in (3.5) is introduced
to match the order of each of the integral indices
(Thompson et al. 1985, Ch. 11).

The Euler equations of (3.5) are
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where the coeficients a;, b; and ¢; (i=1,3) are func-
tions of first order derivatives of A,, A, z(¢, ()
and/or z(¢, ¢). By replacing the differential with
centered finite difference, (3.6) and (3.7) can be
solved by a simple iterative method with appropri-
ate boundary conditions. In the following, we fix
grid points on the lower boundary and apply the
orthogonal condition at other boundaries.

4. Examples of flow simulations

In this section, we will show some results of
flow simulation for two-dimensional mountain waves
both in non-hydrostatic and in hydrostatic regimes.
These examples were chosen because they have been
widely studied using both numerical and analytical
approaches and results are available for comparison.

In the present numerical model, a centered finite
difference scheme in space and time is used. A semi-
implicit time scheme is also used for acoustic terms
in the (-direction to save computer time. The hor-
izontal boundaries of the model are open: the ra-
diation condition of Orlanski (1976) for the normal
velocity, u, and zero normal derivative for the other
variables. At the top and the bottom, the “rigid and
free-slip” condition is imposed. A “sponge” layer,
following the analysis of Klemp and Lilly (1978), is
inserted above the 10km level to reduce reflection
from the top boundary.

In the following, we will show two types of ex-
periments. The first was simulations of flow over
a bell-shaped low mountain embedded in a homo-
geneous atmosphere. The purpose of these exper-
iments was to test the ability to reproduce linear
solutions. The second type of experiment was con-
ducted in two different coordinates for flow over a
mountain with cliffs. This second type would show
differences between coordinate transformations.

Figures la and 2a display vertical velocity fields
in flow over a bell-shaped mountain,

ha®
(z—2,)% +a?’

(4.1)

Zs =

where z, is the surface elevation, z, is the center of
the mountain, with half-widths a=1km and 10km,
respectively. In both cases, the mountain height
h=10m, the atmosphere is isothermal (T5=300 K),
and the Scorer parameter is 10~3m~!. The typi-
cal wave propagation pattern is represented well in
both figures, and they are in good agreement with
the analytical linear solutions shown in Figs. 1b and
2b, respectively.

In the case where the slope of the terrain is gentle
as in Figs.l and 2, the flow simulated in the gener-
ated grid system shows no apparent difference from
that in 2* system which is widely used by meteorol-
ogists:
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2-D ACOUSTIC TIME = 75.0 MIN NEXP = 2823

X (km)

Fig. 1a. Contours of simulated vertical velocity for stratified flow over the bell-shaped mountain with a
half-width of 1 km and a height 10 m. The unit of velocity is 0.1 cm/sec.
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Fig. 1b. As in Fig. la, except the analytical linear solution.

. the difference between the above two-coordinate sys-
z =1z tems will be evident. In order to show the difference
. z -z, (4.2) ‘

¢ = gp in an extreme example, simulations of flow over a

2T — Zs semni-circular mountain were conducted in the two
coordinates. The transformed grids and simulated
vertical velocity are shown in Figs. 3 and 4 for the

generated and z* coordinates, respectively. In both

where zp 1s the height of the model top. In the case
where the slope of the mountain is steep, however,
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Fig. 2a. Asin Fig. la, except that the half width of the mountain is 10 km.

figures, the radius of the mountain is lkm, the at-
mosphere has a constant Brunt-Vaisala frequency
N=10"2sec™!, and the Froude number Fr=U/Nh is
unity. These conditions coincide with Fig. A2 of
Miles and Huppert (1968) who derived the analyti-
cal solution of Long’s equation (Long 1955).

Comparing Figs. 3 and 4, we see clearly that spu-
rious vertical velocity modes appear just above the
mountain in the z* coordinates. Because the trun-
cation error increases inversely with the sine of the
angle between the coordinate lines (Thompson et
al. 1985, Ch. 5), this erroneous vertical velocity is
considered to originate in that error due to the de-
parture of the z* coordinates (4.2) from orthogo-
nality. The generated coordinates are, on the other
hand, more orthogonal than the z*coordinates, and
little spurious velocity is seen in Fig. 3.

5. Summary and discussion

We have adapted a variational grid generation
technique to mountain-wave simulations and have
shown that the simulated waves over the low moun-
tains are in good agreement with linear theory. It
is also shown that in the generated grid systems the
flow over the steep mountain can be simulated with-
out a large finite-difference error compared to that
found in the 2* coordinates.

The finite-difference schemes we used conserve
neither total energy nor momentum, although it is
desirable to use schemes which satisfy conservation
laws. The non-conservation characteristics of our
schemes are not considered to introduce serious er-
ror into the simulated results because total energy
changed only 0.3 % during the time integration of
the linear mountain-wave cases. It is also difficult in
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Fig. 2b. Asin Fig. 2a, except the linear analytical solution.

our system (2.14)-(2.17) to derive conservative
schemes, since the density i1s replaced by the pres-
sure and potential temperature, and, in addition,
the pressure and the potential temperature are di-
vided into their means and deviations. We need the
latter division to reduce the truncation error which
contaminates the results rather quickly.

In conclusion, the author wishes to suggest an ap-
plication of the variational grid generation. We can
determine arbitrarily two parameters, A,, A,, and
one function w. The As represent the relative impor-
tance of the index integral as mentioned earlier, and
w determines the grid-size variation of the model
such that grid size becomes small when W is large
and vice versa (see for example Brackbill and Saltz-
man 1982). We can therefore generate many types
of grids by choosing w. If we formulate W into a time

dependent form, an adaptive grid is obtained. As
an example, choosing the form as

W= (Vu)* + (Vw)?, (17)

small meshes would be generated over the high-shear
region and an effect like nested grid systems would
be produced. Therefore, we will possibly be able to
apply this variational generation technique to cases
where nested systems are otherwise needed.
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Fig. 3. Grid distribution generated by the variational method with A\,=10, A,=10 (upper) and contours of
vertical velocity (lower) for a semi-circular mountain with a radius of 1 km. The unit of velocity is 1

m/sec.

The computations were performed with the use of
a HITAC S-810 and M-280 computers at MRI. The
graphics is drawn by the NCAR graphic subroutines.

Appendix

Numerical aspects

a. Grid point distribution

As shown in Fig. FA1l, all variables except the
pressure (the Exner function) are located at the
same points. The pressure is staggered in the verti-
cal.

b. Finite difference schemes
Define Schuman-type operators (Schuman, 1962)

as
An
$n:¢(n+4n/2):¢(n—ﬂn/2)‘ (A.2)

Here ¢ denotes the dependent variable, n the in-
dependent variable, and A7 is interval over which
the operation takes place. The equations are, then,
written as
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O:u,w_ﬁ

Fig. FA1l. Grid point and variable distributions.

where the finite differences are centered in space and
time,

o0& 1 ¢ & . 1 ¢

a—-m CZ N a—z-——-ﬁg Cl‘ s (A7a)

o¢ _ 1 _¢ o¢ _ 1 ¢

Oz —m&“ "Bz Det T (A.TH)

o& 1 oE _ 1 ‘

8z |»  Detr ¢ 0z |x —Det,récx’ (4.82)

0C ) 1 sec 90 1 oo g

8z |»  Detn be 8z~ Det, b2+, (A.8b)

Det = §¢3% - §02° — 6,2 - 8¢ 2%, (A.9)
and

By using a semi-implicit time scheme in the ¢
direction,it was sufficient to set, as an example,
At=1sec for Az=500 m regardless of the magnitude
of Az.

c. Numerical filter

A time filter proposed by Robert (1966) and As-
selin (1972) is incorporated in the model to remove
computational modes which are inevitable for the
schemes using three time levels. This filter is de-
scribed as follows:

=9 + v( 47T 2ty (ALLD)

where ¢* 1s the value not yet smoothed. In the ex-
periments presented in this paper, we used the co-
efficient v=0.15.

In addition to the time filter, we used a 4th-order
diffusion term in the € direction to damp very short
wavelength modes because the subgrid mixing terms
are very small in stable regions. It has the finite-
difference form
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—Kpbeeecd. (A.12)

For the experiment presented here, we found

Kp At _ 4
Agi = 5 x 10

to be a satisfactory value.
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