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L. fntroducLion

Recently, more frequent numerical experiments
of f low over complex tenain have been performed.
In such simulations, the Cartesian system repre-
sents the effecLs of the curved boundary unsatisfac-
tori ly, since it resolves the slope of the boundary into
steps. It has therefore been considered that a solu-
tion to this problem is a coordinate lransformation
such that a coordinate surface or a curve follows the
boundary. On the other hand, use of an orthogo-
nal system is more desirable than a non-orthogonal
system because the truncation error increases with
the departure from orthogonality. We can consrruct
two-dimensional coordinate systems which satisfy
the above two conditions: the orthogonality and the
coincidence with the boundary shape (for example,
Sahasi  i981;  Ryskin and Leal  1983;  Sharman et  a l . ,
1988).  In  three d imensions,  however,  we cannot  gen-
erate orthogonal systems which follow an arbitrary
boundary shape (Eiseman,  1982).  A pract ica l  so-
lution of the boundary problem is then to gener-
ate non-orthogonal (but not far arvay from the or-
thogonality) coordinates whose coordinate surfaces
fit given boundaries.

In meteorological numerical simulations, bwo
transformations of the vertical coordinate have been
widely used:  the z+ coordinates in t roduced by Gal-
Chen and Somervii le (i975) and the a coordinates
proposed by Phi l l ips (1957).  In  z*  coordinates,  only
the vertical coordinate is transfofrned to fit the lower
boundary ( i .e . ,  the terra in)  and,  in  the a coordi -
nates, the verticai coordinate is replaced by the hy-
drostatic pressure normalized by the surface pres-
sure. These are terrain-foilowing coordinates, but
the coordinate l ines emitted from the terrain are ver-
tical. They have, therefore, the disadvantage that
finite-difference error would be large over the steep
terrain.

Aeronautical engineers have developed techniques
which generate grid points with desired characteris-

tics around objects of complex shape. An extensive
review was given on this subject by Thompson el
a l .  (1982) and by Thompson (1984).  Using these
techniques, we can generate coordinate l ines which
start from the three-dimensional boundary nearly at
right angles. In this papef, one of these generation
techniques, called a variational grid generation, wil l
be adapted to mountain-wave simulations and some
preliminary results wil l be shown.

The geometric transformation introduced to sim-
plify the boundary condition changes the govern-
ing equations into complicated forms. The Poisson
equation which diagnostically determines the pres-
sure in the anelastic systems is also complicated
(e.9., Clark, 1977) and direct Poisson solvers are
impractical. This latter point obiiges us to use it-
erative solvers which consume much computer time.
We will therefore use the elastic systems as basic
equations as shown in the next section. In addition,
it wil l be shown that we can simplify lhe equations
by choosing Cartesian velocity as dependent vari-
ables. The numerical grid generation method, which
was proposed by Brackbii l and Saltzman (1982), wil i
be described in section 3. The results of numerical
experiments wil l be shown in section 4. The detailed
numerical schemes wil l be found in appendix.

2. Model equations

We confine the analysis of the present article to
two-dimensional coordinates for simplicity of pre-
sentation. The technique employed herein is easily
extended to three dimensions.

a. Cariesian systerns
The momentum, thermodynamic and continuity

equations may be written in two dimensions as fol-
lows:
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where
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tansformation formulae in the general case are pro-
vided in standard texls and papers: for example,
Pie lke (1984,  Ch.6) ,  Thompson e l  c l .  (1985),  Gai-
Chen and Somervil le (1975) and Sharman et al.
(1988). It is noteworthy that, if the basic equa-
tions (2.1)-(2.4) arc transformed stra.ightforwardly,
metric terms complicate the transformed equations
and second derivatives of the coordinate variables
appear in them. These terms would increa-se the
finite-difference error and the round-off error. The
general representation of the anelastic momentum
equations can be, however, reduced to a simpier
form when the Cartesian dependent velocity (u,u) is
retained in some parts of the transformed equations
as, for example, in Clark (1977). Fortunately, the
elastic system is also simpiified in the same manner
as follows:
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In the above, p is the pressure, po=105 Pa, 1?a is the
gas constant for dry air, co and cu are the specific
heat of dry air at constant pressure and at constant
volume respectively, (u,.) are the velocity compc-
nents in the r (horizontal) and z (vertical) directions
respectiveiy, I is the potential temperature devia-
tion from a constant value @.

The right-hand-sides of (2.1)-Q.{ are the contri-
butions from turbulent mixing, for which we employ
a conventional f irst-order closure formulation (Lil ly,
1962) as:
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1972).

b. Curuil inear syslems
Terrain can be incorporated in the model by a

transformation from Cartesian coordinates (x.z) to
curvil inear coordinates ((, (),

(2 -7)
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where (u, tir) are the contravariant components of
the velocity in the transformed base vectors and
(u, tu) are the Cartesian velocity using ({, () as in-
dependent variables.

Given the transformation function (2.13), the gov-
erning equations (2.14)-(2.17) are solved numeri-
cally. For practical purposes, however, we need
not know the functionai form of the transformation
(2.13). It is sufficient that grid positions are known
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in both the Cartesian and the curvil inear coordi-
nates, because we approximate the metric terms by
finite differences.

3. Nurnerical grid generation

We use the grid generation technique formulated
as a variational problem. This formulation was pro-
posed by Brackbi l l  and Sal tzman (1982) and is  rep-
resented here for readers' convenience. Please refer
to the original paper for detail.

Define three integrals as measures of global
smoothness of the transformation l, orthogonality
1o, and weighted volume variation .I,:

where ) t=w(r ,y)  is  a g iven weight  funct ion that
determines the variation of the cell volume and

t -
0x 0z 0x 0z
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The integral to be minimized is
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where

, \ ,  and )o are parameters of  re lat ive importance
of  the three propert ies,  AL is  a character is t ic  gr id
length.  The term AL-a in  (3.5)  is  in t roduced
to match the order of each of the integral indices
(Thompson et  a l .  1985,  Ch.  11) .

The Euier  equat ions of  (3.5)  are
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where the coefficients a;, 6; and c; (i=1,3) are func-
tions of f irst order derivatives of )f , ) '", r({, ()
and/or tG, e). By replacing the differential with
centered finite diference, (3.6) and (3.7) can be
solved by a simple iterative method wit,h appropri-
ate boundary conditions. In the following, we fix
grid points on the lower boundary and apply the
orthogonal condition at other boundaries.

4. Examples of f low simulations

in this section, we wil i show some results of
flow simulation for two-dimensional mountain waves
both in non-hydrostatic and in hydrostatic regimes.
These examples were chosen because they have been
widely studied using both numerical and analyticai
approaches and results are available for comparison.

In the present numerical model, a centered finite
difference scheme in space and time is used. A semi-
implicit time scheme is also used for acoustic terms
in the (-direction to save computer time. The hor-
izontal boundaries of the model are open: the ra-
diation condition of Orlanski (1976) for the normal
velocity, u, and zero normal derivative for the other
variables. At the top and the bottom, the "rigid and
free-slip" condition is imposed. A "sponge" layer,
following the analysis of Klemp and Lil ly (1978), is
inserted above the 10km level to reduce reflection
from the top boundary.

In the following, we wil l show two types of ex-
periments. The first was simulations of f low over
a bell-shaped low mountain embedded in a homo-
geneous atmosphere. The purpose of these exper-
iments was to test the abil ity to reproduce iinear
solutions. The second type of experiment was con-
ducted in two different coordinates for flow over a
mountain with cliffs. This second type would show
differences between coordinate transformations.

Figures 1a and 2a display vertical veiocity f ields
in flow over a bell-shaped mountain.
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where z, is the surface elevation, zo is the center of
the mountain, with half-widths o=1km and 10km,
respectively. In both cases, the mountain height
h-10m, the atmosphere is isothermal (7s=300 K),
and the Scorer  parameter  is  10-3m-1.  The typ i -
cal wave propagation pattern is represented well in
both figures, and they are in good agreement with
the analyticai l inear solutions shown in Figs. 1b and
2b, respectively.

In the case where the slope of the terrain is gentle
as in Figs.1 and 2, the flow simulated in the gener-
ated grid system shows no apparent difference from
that in z* system which is widely used by meteorol-
ogists:
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Fig. 1a. Contours of simulated vert ical velocity for strat i f ied f low over the bel l-shaped mountain with a

half-width of 1 km and a height 10 m. The unit of velocity is 0.1 cm/sec.
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where z7 is the height of the model top. In bhe case
where the siope of the mountain is steep, however,

the diference between the above two-coordinate sys-
tems wil l be evident. In order to show the difference
in an extreme example, simulations of flow over a

semi-circular mountain were conducted in the two
coordinates. The transformed grids and simulated
vertical velocity are shown in Figs. 3 and 4 for the
generated and z* coordinates, respectively. In both
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f igures, the radius of the mountain is 1km, the at-

mosphere has a constant Brunt-Viisdli frequency
N=10-2sec-1,  and the Froude number Fr=U/Nh is

unity. These conditions coincide with Fig. A2 of

Ivli les and Huppert (1968) rvho derived the analyti-

ca l  so lut ion of  Long's equar ion (Long I955) .

Comparing Figs. 3 and 4, we see clearly that spu-
rious vertical velocity modes appear just above the

mountain in the z* coordinates. Because the trun-
cation error increases inverseiy with the sine of the
angie between the coordinate i ines (Thompson el
a/. 1985, Ch. 5), thi.s erroneous vertical velocity is

considered to originate in that error due to the de-
par ture of  the z*  coordinates (4.2)  f rom or thogo-
naiity. The generated coordinates are, on the other
hand, more orthogonal than the z*coordinates, and
Iitt ie spurious velocity is seen in Pig. 3.
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N E X P  :  2 8 2 {

5. Summary and discusston

We have adapted a variationai grid generation

technique to mountain-wave simuiations and have

shown that the simulated waves over the low moun-

tains are in good agreemenl with i inear theory. It

is aiso shown that in the generated grid systems the

flow over the steep mountain can be simuiated with-

out a large finite-difference error compared to that

found in the z* coordinates.
The finite-difference schemes we used conserve

neither total energy nor momentum, aithough it is

desirable to use schemes which satisfy conservation

laws. The non-conservation characteristics of our

schemes are not considered to introduce serious er-

ror into the simulated results because total energy

changed only 0.3 % during the time integration of

the linear mountain-wave cases. It is also difficult in

2 _ D  A C O U S T  I  C
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Fig. 2a. As in Fig. 1a, except that the half width of the mountain is 10 km
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our system (2.I4)-(2.L7) to derive conservalive
schemes, since the density is replaced b,v' the pres-
sure and potential temperature, and, in addition,
the pressure and the potential temperature are di-
vided into their means and deviations. We need the
Iatter division to reduce the truncation error which
contaminates the results rather quickly.

In conclusion, the author wishes to suggest an ap-
plication of the variational grid generation. We can
determine arbitrari ly two parameters, )r, )o, and
one function rv. The .\s represent the relaiive impor-
tance of the index integral as mentioned earlier, and
ry determines the grid-size variation of the model
such that grid size becomes small when w is large
and vice versa (see for exampie Brackbil l and Saltz-
man i982). We can therefore generate many types
of grids by choosing tv. If we formulate tv into a time

Journal  of  the Meteorological  Society of  Japan
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Fig. 2b. As in Fig. 2a, except t ,he l inear analyt ical solut ion.

Vol. 6?, No. 3

dependent form, an adaptive grid is obtained. As
an example, choosing the form as

w  -  ( V u ) ' *  ( V u ) ' , (  1 7 )

small meshes wouid be generated over the high-shear
region and an efect like nested grid systems wouid
be produced. Therefore, we wil i possibly be able to
apply this variational generation technique to cases
where nested systems are otherwise needed.

Acknowledgrnents

The author is indebted to T. Koide for introducing
the grid generation technique to the author, and to
F. Kimura and S. Takahashi for useful discussions
and suggestions.



I

I

l

if -l

June 1989

2 - D  A C O U S T  I  C

(kn)
t 0

9

5
--7

3

2

I

0

Appendix

Numer ical  aspects

a. Grid point dislribuhon
As shown in Fig. FA1, all variables except the

pressure (the Exner function) are located at the
same points. The pressure is staggered in the verti-
cal..
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Fig. 3. Grid distr ibution generated by the variat ional method with ),=10, )o:10 (upper) and contours of
vertical velocity (lower) for a semi-circuiar mounta.in with a radius of 1 km. The unit o{ veiocity is 1
m/sec.

The computations were performed with the use of
a IIITAC 5-810 and M-2g0 computers "t unr. irr. 

b' Finite difference schernes

graphics is drawn by the NCAR lraphic r"u.""ih".. "" 
o"ot" Schuman-type operators (Schuman' 1962)

Arl
(A 1)

(A 2),  6 ( n + A q / 2 ) + Q ( n - A n / z )
. r -

z

Here / denotes the dependent variable, 4 the in-
dependent variable, and 44 is intervai over which

the operation takes place. The equations are, then,

written as
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Q i u . r ' , d

D : o

Fig. FA1. Grid point and variable distributions.

where the finite differences are centered in space and
t ime,

-  I {  p6saa66.

For the experiment presented

T. Sa.tomura" 481

(A.12)

here, we found

Det  :  6qx€ -6qz(  -  6Exe .  6qz€ ,  (A .9)

and

e  - f  t  - l

U e t n  =  0 E . r '  0 6  2  -  1 q t  0 6 : ' (A .10)

By using a semi-implicit t ime scheme in the (
direction,it was sufficient to set, as an example,
Al=lsec for y'r=500 m regardless of the magnitude
o f  Az .

c. Numerical f l ler
A time fi l ter proposed by Robert (1966) and As-

sel in  (1972) is  incorporated in  the model  to  remove
computational modes which are inevitable for the
schemes using three time levels. This fi l ter is de-
scribed as follows:

6 '  =  6 " '  *  , ( 6 ' - o t  +  d * ' * o '  -  2 d * ' ) ,  ( A . 1 1 )

where /* is the value not yel smoothed. In the ex-
periments presented in this paper, we used the co-
efficient u=0.I5.

In addition to the time fi l ter, we used a 4th-order
diffusion term in the { direction to damp very short
wavelength modes because the subgrid mixing terms
are very small in stable regions. It has the finite-
difference form

KoAt -  .  ^ - a
= D X I U

A + 4

to be a satisfactory value.
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