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Abstract

The initial-value problem corresponding to perturbed viscous shear flow in shallow water over
topography is solved both analytically and numerically. A formal solution is obtained analytically by
using the Fourier-Laplace transform. On the other hand, a numerical solution is obtained for Froude
number Fr=0.1 and a basic flow U=tanh(¥) by time integration. Both spatial and temporal behavior
of the solution are studied.

The stability of shear flows which are unstable in an inviscid fluid over a flat bottom changes
with the strength of the friction; it varies from unstable to stable through a resonance between the
topographic forcing and a barotropic wave. The structure of the disturbance is very similar to the
unstable barotropic wave as long as the friction is slightly greater than the resonance point. It is
supplied with energy from the basic shear flow through the Revnolds stress. Furthermore, a vortex
remains in the basic shear zone when the topography moves across the flow. The structure of this
vortex is also similar to the unstable barotropic wave and its energy is supplied from the shear flow.
Thus, the vortex has a long life time against the friction.

If the friction is large, the disturbance directly reflects the topographic forcing. The structure

is similar to gravity waves and the energy is supplied from the topographic forcing.
A comparison with the vortex observed in the atmosphere is also described.

1. Introduction

The purpose of this investigation is to ex-
amine effects of topography on a viscous shear
flow and to present a possible mechanism of
formation of mesoscale vortices.

In a number of papers dealing with stability
of the flow, the characteristics of horizontal
shear flows are investigated extensively. Espe-
cially, through series of theoretical papers
(Blumen, 1970; Blumen et al 1975; Drazin
and Davey, 1977; Satomura, 198la, b), the
following turned out to be clear: 1) a necessary
condition for instability is that Froude num-
ber Fr (or Mach number Ma) 21 or U/U" < 0in
a region of the fluid; 2) if Fr<{1 and U/U"'<0, the
growth rate is reduced by the divergence effect,
still the flow is barotropically unstable; 3) if
Fr>1, gravity waves (or acoustic waves) become
unstable. They do not relate with the point of
inflection but with strong divergence. Using a
numerical model, Satomura (1982) inquired

further into effects of nonlinearity and viscosity
on the instability of a divergent shear flow for
Fr=5. He found that gravity waves mixed the
average momentum permanently.

Although the papers cited above showed
effects of divergence on stability of flows, they
do not discuss effects of external forcing on a
horizontal shear flow. These effects were ex-
amined in another series of papers concerned
with lee waves (Blumen and McGregor, 1976;
Blumen and Dietze, 1981, 1982). In these
papers. they found linear steady solutions in
a horizontal shear flow in an inviscid fluid. They
also showed that wave energy is primarily con-
tained within a horizontal strip as a consequence
of the cross-stream variation of the basic flow
and that Eliassen-Palm flux depends on features
of the mountain. But the steadiness of the
system was assumed. whereas the basic flow
U=sech(y) is barotropically unstable. Thus. it
would be interesting to investigate effects of
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the forcing on a shear flow without the assump-
tion 9/0r=0, while they justified the assumption
by frequent observations of steady lee waves
(Blumen, 1986; private communication).

In conditions of mild weather, mesoscale
vortices, the formation mechanism of which
is another motivation of this paper, are observed
in the planetary boundary layer of the atmos-
phere. Using wind towers, Wendell (1972)
observed vortices over a fishhook-shaped valley
in Idaho, USA. Those vortices appeared at
night and they had diameters of about SO0km.
Harada (1981) also observed vortices over
Kanto plains in Japan (hereafter, we call them
“Harada’s vortex”). He found that the horizontal
and vertical scale of the vortex are about 100km
and lkm, respectively. The vortex moved slowly
from the west to the east over the plain. Re-
cently, other vortices were also found in Hok-
kaido, Japan (Kimura, 1986), in Victoria, Aus-
tralia (Abbs, 1986), and in Colorado, USA (Abbs
and Pielke, 1986).

These studies also discussed formation mech-
anisms of the vortices. Both Wendell (1972)
and Harada (1981) suggested by data analysis
that the diurnal differential heating and the
mechanical effect of local topography would
cause the formation of the vortex. Using a re-
alistic nonlinear numerical model, Abbs (1986)
indicated enhanced convergence resulting from
the interaction of two different sea breezes as
the cause of the vortex formation, and Abbs
and Pietke (1986) suggested heating effects
coupled with convergence of the low-level flow.
On the other hand, Kimura (1986) also used
three-dimensional local wind model and con-
cluded that the most important cause of Harada’s
vortex is stretching of vortex tubes in a shear
zone, which is created in the front of a mountain
wind, by a small valley or a “crater”. While
the mechanisms proposed by these studies are
rather diverse, we notice an element common
in them: vorticity concentration due to the
convergence forced by some external causes
such as a crater or the interaction of sea breezes.
Thus, from the point of the formation mech-
anism of mesoscale vortices, it would be also
useful to study basic effects of forcing on a
shear flow by using a simple model.
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In this paper, we will use the shallow water
model because it is the simplest model suitable
for our purpose; this model includes an effect
of divergence, a horizontal shear flow, and a
steady forcing by bottom topography. We
will present the linearized equation of the model
in section 2. In section 3, the analytical solution
is derived by the Fourier-Laplace transform,
and basic characteristics of the
examined. In section 4, the linear equations
are numerically integrated in time. It will be
shown that a large vortex similar to the baro-
tropically unstable wave is formed over the
forcing area. We will also discuss the structure
and the energetics of the disturbance.

solution are

2. Basic Equations

Consider a disturbance in a plane parallel flow
U*(y*) over the small-amplitude topography
described by z*=h§ (x*, y*) as shown in Fig. 1,
where the basic flow U* is in the x* direction
and varies in the transverse direction y*. By
introducing a velocity scale U, and a length
scale L, both of which are straightforwardly
derived from the basic flow, and taking a depth
scale Dy from the basic depth of the fluid,
we can write the dimensionless coordinates,
time, velocity, surface displacement, and bottom
topography as

(""r y):(xx, y*)/’/L,
U(p)y=U*(y*) /U, (u, v)=(u*, v*), U,

h=h*/D,, hy=h¥/D,. (2.1)
The perturbation equations for the disturbance
are written as

t=t*U,/L,

ou ou dU 1 oh

= Us—Fv——t—5—=—=9,,.

ot + Ox dy F! ox ¥

ov ov 1 oh

—+U— — =, 2.2
or ' oax Fi ay Y (2.2)
oh oh  Ou  ov COhy  _
U —+—=—+=—=U—= P+ Gy,

ot 0x 0x oy ox

where Fr=U,/~"gD,is the Froude number, g is
the gravity acceleration, 9, and &, are friction
terms, and ¥, is a dissipation term for the sur-
face displacement. The explicit forms of 7,, ¥,
and , will be specified later. It is worth noting
that the bottom topography is of the same order
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Fig. 1 Shallow water model.

as the perturbations. This is implicitly assumed
in (2.2).
3. Analytical treatment
As long as &, is independent of time and
O (hy) =0(u)=0(v),
we should not assume a form
g=q'(»explik{x—ct)], (3. 1)

for each component ¢ of the perturbation quan-
tities (u, ©, /) because it leads to the conclusion
c=0. If the basic flow satisfies the sufficient
condition of instability, unstable modes, if they
exist, would grow exponentially with time and
dominate the flow pattern. These unstable modes
are neglected if we solve (2.2) under the condi-
tion ¢=0. It indicates that the a priori assumption
¢=0 loses the generality. Thus, instead of the
normal mode analysis such as (3.1), we treat
(2.2) as an initial-value problem.

In order to handle the problem more easily,
we specify the damping terms in this section as

G=—vu
gv:‘_J/RT, (32)
..fh:_‘l/kh

To solve the initial-value problem, take the
Fourier transform with respect to x and the
Laplace transform with respect to z. Thus, let
’ka(-f"):\o \;Q(XJ'J)e'i“a’xe“?"dz (3.3
Equation (2.2) becomes
au ik

(S—Likb")upk—{-z}pk—-—u“-{-—q
F?

7 hae=0.
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IR e 1 df
(5+ikL")@pk‘Tu——F—2 djik —0, (3.4)
e 7 . dv,
('S“‘lkb)hpk—.hik—\—'lkupk——d;—;k—
= b,
P

where
Mo

qik:\ _4tx, O)e***dx,

hbk:goj holx. yye " odx,

s=p+ui.
For simplicity, let u;x=v:»=0. By eliminating
Uy, and vy eq. (3.4) is reduced to

d g 1 dhpe |\ _[po. K
dy V(s+ikU)® dy 17107 Goikvy )

F? ikU A
The boundary condition is
fpx(£a)=0. (3.6)

Further, to keep things simple, we take

hbk:};oka(}'"l’b)
where §(y) is the Dirac delta function and Fios
depends only upon k. Then, the solution of
(3.5) under the condition (3.6) is written as

hpk (}’)

o E“a hlk(}'b) . \
= *FT.\jﬂamG(} s r6)dye
I]CFE }AIMU(J’b)

p S*ikU(}‘b)G(y’yb) y

(3.8)
where G(v, y,) is Green’s function of (3.5) with
the condition (3.6) (see Appendix A for deriva-
tion). The Laplace inversion theorem gives

h k (ys [)
l -~

= : pi
2ﬁi§CL11pk(,1)e dp

. 117_12()/.(;)

Fi( (e ot
— — e LY dvy ,d
27ri~\cL§—a s—ikU(vg) Gy, yo)erdyodp

G(y, yeledp,

kF? ¢ hoU(yy)
2n BCL pls—ikkU(y;))
(3.9)
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with C, parallel to the imaginary axis and to the
right of all singularities of the integrand.

In order to determine time behavior of 1, , we
must know the characteristics of the singularities.

There are three types of singularities (sce
Appendix A):

() p+vR+ikU=0, pole plus branch point,

(i) @ (p+.7, k)=0, pole,

(iii) p=0, pole. (3.10)

At first, let us see the characteristics in the
inviscid situation. The singularities of the type
(i) give the continuum modes which do not
grow in an inviscid fluid as discussed originally
by Case (1960), who also used the Fourier-
Laplace transform to solve an initial-value
problem.

Because the equation ©=0 is the eigenvalue-
equation of the barotropic instability, the singu-
larities of the type (ii) give rise to the exponen-
tial behavior which would be expected of dis-
crete normal modes in an inviscid fluid as dis-
cussed also by Case (1960). These eigenvalues
of type (ii) are divided into two eigen-modes:
barotropic modes and gravity modes. The gravity
modes have non-zero phase velocity and are
neutral as long as Fr<<1 (Satomura, 1981a). The
barotropic modes, on the other hand, grow as
an exponent of time (ie. p is real and corre-
sponds to the growth rate) for Fr<{1 in an in-
viscid fluid because the first term on the right
hand side of (3.9) is not affected by the topog-
raphy'*1. Thus we discuss barotropic modes
only for the type (ii) modes.

The singularity of the type (iii) arises from
the bottom topography %, and it gives a steady
topographic mode.

Next, let us see the characteristics in the
viscous case. In general, the Rayleigh damping
of (3.2) decreases growth rates. Since the con-
tinuum modes (type (i)) would damp exponen-
tially with time, we shall discuss only the modes
of types (ii) (ie Dbarotropic modes) and (iii)
(topographic modes) below.

As ¥ increases the growth rate p of the baro-
tropic mode decreases and equals zero at v%=
vi=y, where r, is the largest growth rate at

(#1) It is interesting that unstable barotropic modes

are not affected by small topography at all. But
we do not discuss if further in this paper.
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wavenumber k& in an inviscid fluid. In this case,
the singularity of type (ii) for v*=»{ coincides
with that of type (iii), and the order of the pole
p=0 becomes two'¥2) This gives a disturbance
which grows proportionally with ¢, according

to the Laplace inverse transform. This is a

resonance between the barotropic unstable
mode and the topography.
In the case v®>vf | we return to (3.9) and

deform the contour of the inverse transform to
the left. Then, (3.9) can be written by using
(A7) as

hk(y$[)

kF; (feo-yBae
= Tn ) e e D)endp

-+ > (discrete exponential)

. ikFgU(}'b)flak[¢1(,V>}‘b)¢2(,¥'<Yb)]
(WR=ikU(r)) 205 k) ’

(3.11)
where € is a small number. The second and third
terms of the left-hand side arise from the poles
of types (ii) and (iii), respectively. The first and
second terms of the left-hand side of (3.11)
damp with time, so that (3.11) becomes

hk(y, [)

- kogU(Yb)flbk[%/h(}’ > ,Vo)f,xbz()’ <)
(B kU (po)) D5 k)

(3.12)
for £>>1. Equation (3.12) indicates that the
topographic mode only dominates the perturba-
tion field if v®>uf . In the following, we will
discuss the solution only in the case v?>»f |
because the well-known barotropic waves grow
and dominate the flow if v®*<w§. Further,
the numerical study on Harada’s vortex per-
formed by Kimura (1986) showed that small
perturbations superposed on a shear flow in a
mountain-wind front slowly decrease their
amplitudes; this probably indicates y®>,# in
the case of Harada’s vortex at least.

To find characteristics of the structure in the
y direction, consider two extremes,

In shear flows such as U=tanh(y) or U=sech(y),
the order of any zeros of D{(p+ v® k) would be
expected to be one.

(#2)
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(a) 1>»vR—uf>0,
(b) vE»uf. (3.13)
In the case (a), (v?, k) would be
DOERY=20E, k)=0. (3.14)
This indicates that p=0 nearly satisfies the

eigenvalue-equation of the barotropic instability
2=0. Thus, the structure in the y direction is
similar not to the topographic forcing but to
the unstable barotropic mode of the wavenum-
ber k, although the mode itself is a steady mode
forced by the topography.

On the other hand, in case (b), 9 (%, k) would
be far from zero. Ths structure in the y direction
would not be similar to the unstable barotropic
mode.

Next, in order to examine the structure in
the x direction; we apply the Fourier inverse
transform to (3.12);
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hix,p,1)

- l L / , itk ]~

*FV\MU(},Z)Q dk

_ e GRFUALLG (v > ) (v <po) Tttt
27 ) w (W—ikUYD(LE k)

(3.15)
for r>>1.

Because r, reaches its maximum rmax atk=Fk,,
which is the maximum growth rate of the in-
viscid barotropic instability, we should con-
sider the following extremes instead of (3.13):

(a’)
(b)) vERE,
where vf=r_ . .

First, we examine the case (a’). Because
vB=p%  the integrand of (3.15) will have a
pole at k=k, which is located near k, in the
complex k plane. Thus, (3.15) is evaluated ap-
proximately as

I »uR—1E>0,
(3.16)

h(x,y,1)
_ ikaFUho. [y lettas
- VvE—il U
U RTI l |
L, DOEE) L (3.17)
where
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Im(k,)=0 for x=0,

<0 for x<0. (3.18)

The contribution to the integral of (3.13)
from other zeros of @ is expected to be small
for !x;» 1 because the imaginary part of the
poles will be larger than that of k,. The con-
tribution from the zero of v® +jkU is not con-
sidered, but it is probably small according to the
results of the numerical simulation described
in the next section.

It is indicated from (3.17) that the structure
in the x direction is periodic with wavenumber
of Re(k,)=k. and amplitude which decreases
as exp[- [/m(k,lx]. Again we find a similar
structure to the most unstable barotropic mode,
although this disturbance is the steady mode
forced by the topography. This is an interesting
result because the eigen-mode of the system
finally dominates without any dependence on
the forcing distribution.

In case (b"), the structure in the x direction
would strongly reflect the structure of the fore-
ing as long as it does not vary significantly in the
forced wavenumber range. This is confirmed by
the numerical simulation.

4.  Numerical treatment

To verify the theoretical discussion of the
preceding section, we integrate eq. (2.2) numeri-
cally for Fr=0.1(%3),

We use a space-staggered and time-centered
grid and the grid resolutions in the x and y
directions are 4x=0.47 and 4y=0.4, respectively.
The domain of integration is —15<x<{15, —10<
»<10, and boundary conditions in the x and y
directions are cyclic and rigid walls, respectively.
The length of the domain in the x direction is
about twice as long as the wavelength of the
most unstable barotropic mode in an inviscid
tluid.

We consider a basic flow

(#3) As mentioned in introduction, if Fr<1, growing
modes are unstable barotropic modes only
(Satomura, 1981a, b). Thus, we are able to fix
the Froude number to a number less than unity
without loss of generality.
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U(y)=tanh(y), (4.1)
and the bell-shaped dent with circular contours
—1
(R a*—1)¥7

where R=/x2+(y+y)?. In this model, we can
specify the center of the dent, (0,y,), to any
point in the y axis. The parameter a defines the
scale of the forcing. In order to separate the
forcing scale from the resonant or near resonant
modes which have wavelengths of the order of
10, we set 2=0.5.

In this section, we specify the damping term

hy(x, p)= (4.2)

as
F=vVu,
F,=0V0, (4.3)
ghio,
where
32 2
2:_L4_ 0
A 5 ~ 5 -
ox*  oy?

The formulation (4.3) is more realistic than
(3.1). The resonance phenomenon, however,
will change because of the different dependence
on wavenumber. In the present situation, it is
difficult to determine the critical viscosity y,
precisely. Instead of using the definition v =
Fmax,» Wwe define v, such that, if v>v., the am-
plitude of every disturbance decreases to zero
in the domain of integration. Then, it is possible
to estimate v, by trial and error, and we find
0.25<v.<0.3. In the following discussion, the
cases (a') and (b") are represented by v=03,
v=1.0, respectively.

Three numerical experiments are performed.
In exp. 1, we specify y,=0 in (4.2) and v=0.3.
This experiment will reveal the characteristics
of the near-resonant mode. In exp. 2, we also
specify v=1.0. This experiment will show the
non-resonant mode. Finally, in exp. 3, we again
set »=0.3 but

yo=—5+0.3¢,
which describes the relative movement of the
dent to the basic flow. This experiment tests
whether the near-resonant mode remains in the
shear zone when the forcing moves away. This is
regarded as a simplified model which roughly
simulates the passage of the front of the moun-
tain wind over a dent. While this experiment is
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oversimplified to simulate the ““Harada’s vortex”,
we expect it to give some ideas about the forma-
tion mechanism of the vortex.

EXP.1: Shear flow with
larger than the resonance

Fig. 2(a) displays the structure of the pertur-
bation velocity at r=30. While the flow con-
verges at the upper-right and the lower-left sides
of the dent, the flow pattern is very similar to
the unstable nearly nondivergent disturbance
shown in Fig. 3(a) and (b) for an inviscid fluid
with a flat bottom; this disturbance is an un-
stable barotropic wave in essence. The scale of
the perturbation is much larger than the topo-
graphy and this is one of the characteristics of
the near resonant mode. Further, we notice
that the perturbation decreases in its strength
gradually away from the dent. It confirms the
approximate formula (3.18) qualitatively. The
dominant wavenumber of this pattern, however,
appears to be one half of k.. This is due partly
to higher-order differentiation in the damping
term (4.3) and partly to finiteness of the domain.
We discuss it briefly in Appendix B. As a whole,
the structure and the largeness of the scale men-
tioned above agree with the analytical treatment
discussed in the previous section.

Fig. 2(b) shows the disturbed flow (Utu,v) at
t=30, where U=—U ,tanh(y), and U, is twice as
large as the maximum value of ¥ and v in the
whole domain. We see a vortex clearly around
the dent. The horizontal scale of the composite
vortex is much larger than the dent. We should
note, however, U, is rather small compared
with a limit of linearization and, hence the
vortex would be emphasized in this figure.

At later time =50, when the perturbation
becomes almost steady, the flow pattern similar
to the unstable barotropic wave becomes more
dominant (Fig.4(a)) and the scale of the com-
posite vortex appears to expand slightly (Fig.
4(b)).

It would be interesting to examine the ener-
getics of this flow. By a short and straightfor-
ward calculation of (2.2), the energy equations
are written as

dKg
dat

viscosity  slightly

:EKZ’KEJ*[KE, PEji[KEvujl
(4.4)
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Fig. 2(a)  Velocity of disturbance, (u,v), at =30 of exp. 1. Dotted circle at
the center indicates a contour of the topography /#p=0.5.

6.97L-02

X

Fig. 2(b)  Disturbed velocity, (U+u,v), at r=30 of exp. 1. Dotted circle at the
center indicates a contour of the topography 4,=0.5.

&:[KE, Pyl+[hy Pg] are the perturbation kinetic energy and the

di perturbation potential energy, respectively. The
where terms

e ) . .

KE:?}(U'AQ}Z)dS LK27 KEjgf\uvfj—(;de

and and ’
1 ~

Pr=———\1*dS . ~ 1 ¢ /5 5

L '\ [Kp, Ppl=——; \h( e )dS
Fil ' Nax oy
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Fig. 3(a)  Velocity of disturbance, (¢t,v), of the barotropic instability for Fr=
0.1.

1
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Fig. 3(b)  Disturbed velocity, (U+u,»), of the barotropic instability for Fr=
0.1.

represent the energy conversions from the mean  represent the dissipation of K by viscosity and
kinetic energy K, to Kp, and Ky to Py, respec-  the generation of Py by the topographic lifting,

tively. The terms respectively,
. The mean kinetic energy can be divided into
[ K, VJE*V\(UVQM—'UVZ%‘)CZS two parts as Satomura {1981a) discussed. As far

as the case we considered in this paper, however,

and . . -

the rate of the inner conversion of the two parts

Chy Pyl= ] \‘U/z dhde is found small and thus we do not discuss the
Y ox inner conversion.

Fig. 5 shows the energy diagram at r=50.
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Fig. 4(a)

Same as Fig. 2(a) but =50.

Fig. 4(b)

It is evident that the perturbation is supplied
with energy mainly not from the topographic
forcing but from the mean kinetic energy. This
fact is evidence that this mode is closely con-
nected with barotropic instability and this is
one of the characteristics of the near-resonant
mode discussed in the preceding section.

The vorticity and the divergence of the per-
turbation field are shown in Fig. 6. We see that
the divergence exceeds the vorticity near the
dent but the vorticity comes to be dominant
away from the dent. Thus, as a gross feature,

X

Same as Fig. 2(b) but r=50.

the disturbed flow seems to be a barotropic
vortex.

EXP.2:  Shear flow with large viscosity

Next, we show the velocity at r=50 in Fig. 7.
It is clearly found that the scale of the pertur-
bation is much smaller than that of exp. 1. We
also find that the divergence and the convergence
of the perturbation velocity is dominant. In fact,
the maximum of the divergence is found to
be more than ten times the maximum of the
vorticity. The absolute values of the velocity,
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Fig. 5 Energy diagram of disturbance at =50 for exp.

L.

divergence, and vorticity are, however, smaller
than those of exp. 1.

The energy diagram is presented in Fig. 8.
This diagram indicates that the energy conver-
sion due to the Reynolds stress turns out to be
negligibly small compared with the dissipation
of kinetic energy. Alternatively, the potential
energy supplied from the topographic forc-
ing maintains the perturbation kinetic energy
through the correlation between the divergence
and the surface elevation. These characteristics
are what we expect of a non-resonant mode from
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the discussion in the preceding section.

EXP. 3: Shear flow over moving ropography
The velocity of the perturbation is illustrated
in Fig. 9 at r=50. At this time, the dent has
passed the shear zone and reaches the boundary
at y=10'%%_ Thus, in almost all the domain,
the topographic forcing is so small that it has
scarcely any influence on the flow. We find,
however, that a vortex is formed in the shear
zone and that it has a similar structure to the
unstable barotropic wave. This vortex began
growing when the dent approached the shear
zone and it turns out to be evident after the
dent left the shear zone. In order to explore why
the vortex is not diminished by the viscosity,
let us turn to the energy diagram presented in
Fig. 10. This diagram shows that the energy
conversion [Kg, Pg] is less than half of [Kj,
Kz]. Because the dent is far from the vortex,
it can supply only little energy to the vortex.
Thus, the vortex probably receives almost all
the kinetic energy through the energy conver-
sion [ K5, Kz]. In other words, once the vortex
is formed by the dent, it extracts the kinetic

VORTICITY

TIME =

50.

0

MAX = 7.1E£-02

Fig. 6¢a)
(#4) The same calculation was performed in a larger
domain, (~15<x<15, —20<y<20), but the re-
sults changes little.

X

Vorticity of disturbance at /=50 for exp. 1. Contour interval is 0.02.
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Fig. 6(b)
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Divergence of disturbance at =50 for exp. 1. Contours are 0.02,

3 46L 02

Fig. 7(a)

energy from the basic flow and can hold its
strength against the viscous dissipation.

5. Summary and discussion

Through the use of the linearized shallow
water equations, we have studied the response
of plane parallel flow to steady forcing. Both

X

Same as Fig. 4(a) but for exp. 2.

analytical and numerical studies were performed

for Fr<1.

The characteristics of the disturbance are
summarized:

(a) If the basic flow is unstable over a flat
bottom, the same flow over small topog-
raphy is also unstable. The same disturb-
ance as that over a flat bottom (ie. eigen-
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Fig. 8 Energy diagram of disturbance at r=50 for exp.
2.

mode) grows exponentially with time and
finally dominates the steady topographic
wave.,

If the friction equals the growth rate of the
unstable mode in the inviscid flow, the
eigen-mode will resonate with the topog-
raphic forcing. It grows as a power of ¢.

If the friction is slightly greater than the
growth rate, the flow is dominated by the
steady topographic disturbance whose struc-
ture is similar to that of the unstable baro-
tropic wave. The wavelength of the disturb-
ance is much longer than the scale of the
forcing, and it depends on the type of the
damping. This disturbance is supplied with
energy mainly through the energy conver-
sion due to the Reynolds stress.

(d) When the dent goes across the shear zone,

(b)

()

Same as Fig.

4(b) but for exp. 2.

the vortex remains in the shear zone. It has
a structure similar to that of the unstable
barotropic wave and also receives its energy
from the basic flow through the Reynolds
stress. This fact interprets the long life of
the vortex in the viscous fluid.
If friction is much greater than the growth
rate, the structure of the disturbance re-
flects topographic forcing. The disturbance
receives its energy mainly from the forcing.
Encouraged by the result that the vortex
much larger than the forcing is created in viscous
shear flow, we will compare our disturbance
with Harada’s vortex in two aspects: the spatial
and time scale of the disturbance. Of course,
the energetics represents one of the important
characteristics of the disturbance in this paper.
But we cannot compare it with the observations
or the numerical simulation because no calcula-
tion of energetics has been done yet.

Now, let us compare the orders of the spatial
scales first. As discussed in the Appendix B, the
longest wave in the region should appear if
viscosity of the type »V’u acts on the waves,
In the real atmosphere or the ocean, a basic
current which satisfies the condition that it
flows two-dimensionally over the topography in
question and has appropriate shear probably
exists only in a small region. This would provide
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Fig. 10 Energy diagram of disturbance at 7=50 for

exp. 3.

the scale of the wave. In the case of Harada’s
vortex, the wind from the mountains located
in the west of the plain has a large horizontal
scale ~10%km. It does not contradict the dis-
cussion in this paper.

Next, let us compare the orders of the time
scales. Numerical integration of this paper
showed that the time scale of the growth of the
disturbance is O(10) in a non-dimensional unit
(2.1). On the other hand, since the wind from
the mountains has a horizontal shear of the order
of 3x107%sec™t (see, for example, Fig. 13 of
Kimura, 1986), the time scale of 2x10%sec of
Harada’s vortex also corresponds to O(10) in
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Same as Fig. 4(a) but for exp. 3. The dent is going through the bound-
ary at y=10 (the upper limit of the figure).

non-dimensional unit. Thus, both time scales
agree with each other.

In concluding the paper, the author wishes
to point out the following as a generalization
of the analytical results: Even when the basic
flow is stable owing to the viscosity or the shear
itself, disturbances similar to the eigen-modes
of spatial scales different from the forcing
would be observed if the forcing has the same
phase velocity as that of the eigen-modes. This
would be a reasonable generalization because
the discussion in section 3 can be generalized to
include many kinds of forcing. Some studies on
baroclinic instability over topography (Pedlosky,
1981; Szoeke, 1983; Yoden and Mukougawa,
1983) support this generalization, although
they are concerned with the interaction of
neutral waves with topography in an inviscid
fluid and we are concerned with a viscous fluid
essentially. Further we suppose that the similar
disturbance will appear even if the forcing has
a slightly different velocity from that of the
eigen-mode, since 9(s, k) would be also small
in this case. The results of Wakata and Uryvu
(1984), who calculated linear responses of a
steady baroclinic wave over sinusoidal topog-
raphy with Ekman layers, support this surmise.
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Appendix A
Green’s function
Let@, (v:k;s) (i=1,2) be two linearly independ-
ent solutions of
dy ((s—ikU)* dy )

*r 2 k:g L —
14 (s~ikU)?) h2:=0,
which is the homogeneous part of eq. (3.5) and
coincides with eq. (2.6) of Satomura (1981a)
by putting s=—ikc. The general solution can be
expressed by

$=A4¢.(v; k,s)+Bd,(y i k,s), (A-2)
where A and B are constants. The explicit forms
of ¢; around a singular point at y=y. where
s+ikU(y,)=0 have been given by Satomura
(1981a) as

(A-1)

¢1:(y",‘)c)géoan(yﬁyc)n,»
) (A-3)
¢2:7/¢1 IOg(}’_yc); nZ::Obn(yM,Vc)n y

where a, and b, are expansion coefficients de-
pending on k and the profile of U, and 7 is a
constant.

For there to be a non-trivial solution subject

to the boundary condition (3.6) we must have
Dk, s)=d.(—a; k,s)g.(a; k,s)
~¢.(—a;k,s)p.(a; k,s)
=0.

This serves to determine the discrete eigenvalues.
Next, define functions ¢, and ¢, as

(A-4)
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Gy k,s)=0.(y; k,s)g.(a; k. s)
—u(yik,s)olas k,s),
Doy k,)=6,(y; k,s)g.(—a; k,s)
—0.(yi k) (—a;k,s).
(A-5)
Then, ¢, and ¢, satisfy eq. (A.1) and the con-
ditions
(A-6)

Now we can construct Green’s function G(v,ve)
from ¢, ¢y, and 9 :

Orlask,s)=du(—a; k,s)=0.

[ y>ve)da(y< yo)

G(y,ve)= S s) . (A-T)
where
oy >ye)du(y<ye)]
_ G ()gaye) for y>ye, (A-8)
Lgi(ra)ga(y) for y<ya.

Appendix B
Dominant scale and viscosity

Although the numerical results in exp. 1 and
2 are generally consistent with the analvtical
results, the wavelengths of the dominant modes
are somewhat different from the analytical
estimation. The reason for this difference is that
we used the Rayleigh damping (3.2) in the
analytical examination and the viscosity of the
Laplacian type (4.3) in the numerical integra-
tion. As discussed in section 3, the resonant
wavenumber for the Rayleigh friction is the
same as that of the most unstable wave in an
inviscid fluid, for the strength of the friction
does not depend on the wavenumber (see Fig.
B1). On the other hand, the effect of (4.3)
varies with the wavenumber. We may estimate
the viscous term as

VWi =~ —vakiq, (B-1)

where @ is a parameter that includes an effect of
the wavenumber / in the v direction. If perturba-
tions are sinusoidal also in the y direction, «a
becomes

a=1+

e (B-2)
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Fig. Bl ~ Growth rates of barotropic instability with
Rayleigh damping.
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Fig. B2 Growth rates of barotropic instability and
damping rates of viscosity va k? fora=1.25 and S.

Fig. B2 shows the growth rate kc; of the un-
stable barotropic wave in an inviscid fluid and
also the function vak? Waves shorter than the
resonant wave, the wavenumber of which is
defined by the crossing point of the two curves,
damp and longer ones grow with time. In the
finite domain used by the numerical integration
in this paper, the longest wave in the domain
decreases most slowly. It is twice as long as the
most unstable wave in an inviscid fluid and, in
exp. 1 and 3, it is the nearest wave to the re-

sonant wave, Thus, the longest wave dominates
in those experiments.
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