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Abstract

The in i t ia l -value problem corresponding to perturbed v iscous shear f lorv in shal lou '  water  over
topographt '  is  solved both analyt ical l -v  ar . rd numencal ly .  A iormal  solut ion is  obtained analyt icai ly  b-u '
usins the Four ier-Laplace t ransform. On the other hand. a numericai  solut ion is  obtained for  Froude
number Fr=0.1 and a basic t low L '=tanh(y)  by t ime integrat ion.  Both spat ia l  and temporal  behavior
of  the soh"r t ion are studied.

The stability of shear florvs which are unstable in an inviscid fluid over a flat bottom changes
with the strength of  the f r ic t ion;  i t  var ies f rom unstable to stable through a resonance between the
topographic iorc ing and a barotropic wave. The structure of  the disturbance is  very s imi lar  to the
unstable barotropic wave as long as the f r ic t ion is  s l ight ty greater  than the resonalce point .  i t  is
suppl ied rv i th energy f rom the basic shear f low through the Reynolds stress.  Furthermore.  a vorrex
remains in the basic shear zone when the topography moves across the l - lou ' .  The structure oi  th is
vortex is  a lso s imi iar  to the unstable barotropic wave and i ts  energy is  suppl ied f rom the shear f loq, .
Thus,  the vortex has a long l i le  t ime agarnst  the fnct ion.

I f  the f i ic t ion is  large.  the disturbance di rect l l -  ref lects rhe topographic forc ing.  The srructure
is simiiar to gravity rvaves and the energy is supplied from the topographic forcrng.

A compar ison wi th the vorte.r  observed in t i re atmosphere is  a lso descr ibed.

l .  Introduction

The purpose of this investigation is to er-
amine effects of topographv on a viscous shear
florv and to present a possible mechanism of
lormation of mesoscale vortices.

In a number of papers dealing with stabil ity
of the flow. the characteristics of horizontal
shear flows are investigated extensiveiy Espe-
ciall1,. through series of theoretical papers
(B1umen. 1970. Blurnen et al. I9l 5'. Drazin
and Davey,  1977;  Satomura,  1981a.  b) ,  the
following turned out to be clear: 1) a necessarv
condition for instabil ity is that Froude num-
ber Fr (or Mach number Mo)21 or Lri U" < 0 rn
a region of the fluid: 2) f Fr{I and Lii L-"(0. the
growth rate is reduced by the divergence effecr.
sti i l  the flow is barotroplcallv unstable; 3) if
Fl)1. gravity waves (or acoustic waves) become
unstable. They do not relate with the point of
inflection but with strong dlvergence. Using a
numerical modei. Satomura (1982) inquired
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further into effects of nonlinearitv and viscosit-v-
on the instabil ity of a divergent shear flow for
&=5. He found that gravity waves mixed the
average momentum permanenth,.

Although the papers cited above showed
effects of divergence on stabil ity of f lows. they
do not discuss effects of external forcing on a
horizontal shear flow. These effects were ex-
amined in another series of papers concerned
wlth lee waves (Blumen and McGregor. 1976 I
Blumen and Dietze.  1981,  i98:) .  In  these
papers. they found linear steadv solurions in
a horizontal shear flow in an inviscid fluid. They
also showed that wave energy is pLimarilr, con-
tained within a horizontal strlp as a consequence
of the cross-stream variation of the basic l ' low
and that Eliassen-Palm flux depends on features
of the mountain. But the steadiness of the
system was assumed. whereas the basic l lorv
LI=sech@) is barotropically unstable. Thus. it
would be interesting to investigate effects of



the forcing on a shear flow without the assump-
t ion D,d l=0,  rvh i le  thel  iust i f ied the assumpt ion
bv f requent  observat ions of  s teady lee waves
(Blumen.  I  986 ;  pr ivate communicat ion) .

In conditions oi' mild weather. mesoscale
vortices. the formation mechanism of which
rs another  mot ivat ion of  th is  paper,  are observed
in the p lanetarv boundrr l /  la \er  of  the atmos-
phere. Using wind towers. Wendeil (.1912.)

observed vortices over a fishhook-shaped va1ley
in Idaho, USA. Those vortices appeared at
n ish r  and thev had d iameters of  about  , (0krr r .
Harada ( 1 98 1 ) also observed vortices over
Kanto plains ln Japan (hereafter. we call them
"Harada's vortex"). He found that t ire horlzontal
and vertical scale of the vortex are about 100krn
and 1km. respectively. The vortex moved slowiy
from the west to the east over the plain. Re-
cently. other vortices were aiso found in Hok-
kaido. Japan (Kimura, 1986), in Victoria. Aus-
t ra l ia  (Abbs,  1986).  and in Colorado,  USA (Abbs
and Pie lke.  1 986) .

These studies also discussed formation mech-
anisms of the vortices. Both Wendell (1912)
and Harada (1981) suggested by data analys ls
that the diurnal differential heating and the
meohanical effect of local topography would
cause the formatron of the vortex. Using a re-
a i is t ic  nonl inear  numer ical  model ,  Abbs (1986)
indicated enhanced convergence resulting from

the interaction of two different sea breezes as
the cause of the vortex formation, and Abbs
and Pielke (1986) suggested heating effects
coupled with convergence of the 1ow-level f low.
On the other  hand,  Klmura (1986) a lso used
three-dimensional loca1 wind model and con-
cluded that the most important cause of Harada's
vortex is stretching of vortex tubes in a shear
zone. which is created in the front of a mountain
wind. b5r a sma1l valley or a "crater". While
the mechanisms proposed by these studies are
rather diverse, we notice an element common
i n  tLo ' - .  . ,n . r i ^ i ra ,  ̂ ^ncentJa t iOn due tO the

convergence forced by some external causes

such as a crater or the interaction of sea breezes.

Thus, irom the polnt of the formation mech-

anism of mesoscale vort ices. i t  would be also

useful to study basic effects of forcing on a

shear l low by using a simpie model.
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In this paper, we wil l use the shallow water
modei because it is the simplest model suirable
for our purpose; this model includes an effect
of divergence. a horizontal shear flow, and a
steadl" forcing b1' bottoln topography. We
wiil present the l inearized equation of the model
in section 2. In section 3. the analytical solution
is derived by tire Fourier-Laplace transform.
and basic characteristics of the solutlon are
examined. In section 4. the i inear equations
are numerically integrated in time. It wil l be
shown that a large vortex similar to the baro-
tropically unstable wave is formed over the
forcing area. We will aiso discuss the structure
and  the  ene rge r j cs  o t ' t he  d i s tu rbance .

2. Basic Equations

Consider a disturbance in a plane parallel f low
Lr*("),*) over the sma11-amplitude topography
descr ibed by zx=hf i  ( ,x* , .u*)  as shown in F ig.  1,
where the basic flow Lr* is in the .t* direction
and varles in the transverse direction -1l* By
introducing a velocit1, scale LI6 and a length
scale L. both of which are straightforwardly
derived from the basic florv. and taking a depth
scale ,0 from the basic depth of the fluid.
we can write the dimensioniess coordinates.
time, velocity. surface dispiacement. and bottom
topography as

( - v ,  y ) :  ( x " ,  . v * )  i  L ,  t : t *U  , , t  L ,

L t  ( v ) :U ' r1  r * ; , t 7 ' , ,  ( u ,  u ) :  ( . u " ,  t ; + )  iU , , ,

h : h * i '  D o ,  h a : h t , ' D *  ( 2 . l )

The perturbation equations for the disturbance
are wrltten as

6 u , , . o u  J L '  I  A h
. - - - - - - - . - . - - _ . . . - r  - _ - -

o r ' " o . r  " d y  F )  6 . r - ' " '

6r ,  , ,  At. :  I  ah r  i .  1  1 \
|  -  

-  l '

o l  o , r  r -  o l '

6 h  , , 6 1 t  6 u  o o  , . 6 1 t . ,
-  |  _ .  i  ,ot o,\ 0x oy o_Y

where Fr=Ur, 'v !Dois the Froude number.  g is
the gravity acceleration. T, and ?u are friction
terms, and ?r is a dissipation term for the sur.
face displacement. The explicit forms of I u, i ,
and ?r wil l be specified later. It is worth notlng
that the bottom topography is of the same order
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Fig.  1 Shal iou 'water model .

the perturbations. This is implicit l l '  assumed
(2 .2 )

Analytical treatment

As iong as ir6 is independent of t ime and

o  t h u l : 9 1 v ) : o ( r , ) ,

we should not assume a torm

q : q ' ( r ) e x p l r A ( r - a ) 1 ,  ( 3 .  I  )

for eacl.r oomponent q of the perturbation quan-

tit ies (r.r, z, /r) because it leads to the conclusion
c=0. If the basic flow satisfies the sufficient
condltion of instabil it l ' .  unstable modes. if they
exist, would grow exponentiail.v with time and

dominate the flow pattern. Tirese unstable modes
are neglected if we solve (2.2) under the condi-

tion c=0, It indicates that the a priori assumption
c=0 loses the generalit,v. Thus. instead of the
normal mode analysis such as (3.1). we treat
(2.2) as an init ial-value problem.

In order to handle the problem more easil) .
we specify the damping terms ln this section as

1  d l t , o  ^
{ s - r A ' L  } l ' p r * ? ' r r -  F - :  d r  

: U .

( s  - l A ' t '  I  h  p e - h , e -  i k u  r , . - T

; b
-  _  _ t  h .  .

v  t t h t ,

p

where

i -
Q  r t :  \ , _ Q ( x , , t ' ,  0  ) e - ' h '  d x ,

f €
h o o : \  h r ( x  ,  y  1 e - r k ' d x  ,

J - F

g:  p , r  vR .

For simplici t l  .  let u i  p =r i  r=0. By el iminating

uph and r  p r ,  eQ.  (3 . t1 )  l s  reduced to

d  I  d h , a y _ l t r . - -  A ' '  r / r
d ) ,  i T s i l A L ' ) '  d ) ,  i - 1 " -  ( s - I ' / . . L : t t t ' t e h

F !  i A . [ '  ,- + - (  h , , -  
" ' -  

l t ' o ) .  ( 1 .  5  )
s - r A ' [  \  ' '  p  /

The boundarl, .  condit ion ls

h r o ( ! a ) : o .  ( 3  6 )

Further. to keep things simple. we take

h 6 o : i t o o $ ( 1 ' - '  1 ' 0 1

where 5(1,) is the Dirac delta function and frro

depends only upon k. Then. the solut ion of

(3 .5 )  under  the  cond i t ion  (3 .6 )  i s  wr i t ten  as

h r o ( ) ' )

F  i "  
/ 1 ; u , t l ' ' ,  G t r . r , t d r c

. - o l  1 / , ' (  ( 1 , , J

i l r F i  h , , , [  \ r , l

I  s '  I I , ' L { . } , I

( 3 . 8 )
where G(r, I'r) is Green's functlon of (3.5) u'ith
rhe condit ion (3.6) (see Appendt-r A for deriva-

t ion). The Laplace inversiot ' t  theorem gives

h  o b , ,  t )

1 i
-  * \  / l o r ( , 1

Z i t  ) C  r

6 6 i

( . 3 .  4 )

" ) e n L d  p

"  
. : ' : " )  ,  G t 1  . . r ' 6  t e r ' '  d  t ' ,  c l  r

s  l A ' L  ( l c J

/ t  , o [ - (  - r  , )

T. Satomura

as

1n

J .

( 3 . 2 )

To solve the init ial-va1ue problem. take the

Fourier transform with respect to . l(  and the

Laplace transform with respect to r.  Thus. let
^- . " -

4 o u ( t ' ) : 1 , ] _ _ q ( " ,  t , t ) e - i i ' t 4 r r - n ' 7 1  .  ( 3 .  3 )

Equat ion (2.1)  becomes

''l l ; l'
( . c - i  A ' { ' l u  y  + *  ' '  p t } * u , , = : o - h  r ,  

- 0  .
u )  r ; Q ( . 1 , .  t ' 5 ) e | " d p ,

F 2  t  i o' 7 i  I

2 r i  . \ c ,  ) , "

kF i  i

h b  {  x * ,  y

L / r  J r  L p ( s ' l k L ' ( y 6 ) )

( 3 . 9 )
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wavenumber k in an inr.iscid i luid. In thrs case.
the singuiarity of type (i i) ioruo-',f coincides
with that of type (i i i). and tire order of the pole
p=0 becomes two(+2).  This  g ives a d is turbance
which grolvs proportronally with r. according
to the Laplace inverse transform. This ls a
resonance between the barotropic unstable

mode and the topography.

In the case vo >vt  ,  we return to (3.9)  and

deiorm the ctrntour of the inverse transform to

the 1eft. Then. (3.9) can be written by using
(A.7)  as

h o ( y , t )

1 4  p 2  ' i a - , R a 1

' ) -  I  p  " P /

_- |  (d iscrete exponent ia l )

i k F iU ( y b) h b h14,, ( !- .- ]- ;) (!,,( y < y )1
( r ' - ,  i kL ' \  ) \ ,D

( 3 . 1 1 )

rvhere e is a small number. The second and third
terms of the left-hand side arise from the poles
of t1,pes (i i) and (i l i). respectivel,"-. The first and
second terms of  the le f t -hand s ide of  (3.1 1)
damp with time. so that (3 1 1) becomes

h u ( y , t )

_  i kF?U (yo )hu r l , ! , ( y  >  , vo ' ) , ! ' _ ' ( t , < t ' o ) )
(YR -  ikU (Y r ' ) )9(yr ,  k)

( 3 .  l 2 )

for  r ) )1 .  Equat ion (3.12)  ind icates that  the
topographic mode on11r dominates the perturba-
t ion f ie ld i f  vPlvf  . In  the fo i lowing,  we wi l l
d iscuss the soiut ion only in  the case vR>.>f  .
because the weil-known barotropic waves grow

and dominate the flow if vR --vf . Further.
the numerical stud1, on Harada's vortex per-
formed by Kimura (1986) showed that sma1l
perturbations superposed on a shear flow in a

mountain-wind front siowly decrease their
amplltudes; this probably indicates ,n)>vf rn
the case of Harada's vortex at least.

To find characteristics of the structure in the
y direction, consider two extremes,

(.+21 In shear flo',vs such as Ll=trnhLl) or L'=sech(,vJ,

rhe order of  an1'  zeros of  -O(p+ vt ,A) would be

expected to be one.

with Cr parallel to the imaginary a-xis and to the
right of a1l singularit ies of the integrand.

In order  to determine t ime behavror  of  h7, ,  we
must know the characteristrcs of the singularit ies.

There are three types of singuiarit ies (see

Appendi-x A):
(i '1 p+,ra +ikU=O. pole plus branch point.
( i i )  I  (p+vn.  k)=0,  po1e.

( i i i )  p=0.  pole. (3 .10 . )

At first. lct r-rs see the characteristics in the
inviscid situation. The singularlt ies of the type
(i) give the continuum modes which do not
grow in an inviscid fluid as discussed originally
by Case (  1960).  who a lso used the Four ier-
Laplace transform to solve an init ial-value
probiem.

Because the equation -O=0 is the eigenvalue-
equat ion of  the barotropic  instabi l i tv .  the s ingu-
larit ies of the type (i i) give rise to the exponen-
t ia l  behavior  which would be expected o i 'drs-
crete normal modes in an inviscid fluid as dis-
cussed a lso by Case (1960).  These e igenvalues
of type (i i) are divided into two eigen-modes:
barotropic modes and gravity modes. The gravity

modes have non-zero phase velocity and are
neutra i  as long as Fr(1 (Satomura,  1981a).  The
barotropic  modes.  on the other  hand.  grow as
an exponent of t ime (.i.e. p rs real and corre-
sponds to the growth rate) fbr Fr(1 in an ln-
viscid fluid because the first ternr on the right

hand side of (3.9) is not affected by the topog-

raphy( + 1 ). Thus we discuss barotropic modes
only for the t,vpe (i i) modes.

The singularity of the type (i i i) arises from
the bottom topography hr and it gives a steady
topographic mode.

Next. let us see the characteristics in the
viscous case. In general. the Rayleigh damping
of  (3.2)  decreases growth rates.  Since the con-
tinuum modes (type (1)) would danip exponen-
tia111 with tinte. we shal1 discuss oniy the modes
of types (i i) ( i.e. barotropic modes) and (i i i)
(  topographic modes)  below.

As rE increases the grorvth nte p of the baro-
troprc mode decreases and equals zero at vR =

yf-10 where rfr is the largest growth rate at

(+1) I t  is  interest ing
are not  a i lected
rve do not  d iscuss

that  unstable barotropic modes
L , .  ^ - ^ [ . . - . , - - ^ - L ,  ^ -  ^ r r .  B U t

i f  f r r r t h o l n  r h i c  n , n p r
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( a )  1 ) > v R  v f > 0 ,

( b )  ) ' * ' > > ' ; .  ( 3 . 1 3 )

ln  the  case (a ) , ' - � ) ( r rE , , t )wou ld  be

J ( v F . i c ) = e ( v f , # ) : 6 .  ( 3 .  l 1 )

This indicates that p=g nearly'  sat isf ies rhe
eigenvalue-equation of the barotropic instabi l i rv
5, '=0. Thus. the structure in the 1 direct ion ts

similar not to the topographic forcing but to
the unstabie barotropic mode of the wavenum-
ber k, although the mode i tself  is a steadv rnocle
forced b-v the topograph-v.

On the other hand, in case (b),vt(rrF, f t)  would
be far from zero. Ths structure in they direct ion
wouid not be similar to the unstable barotroplc

mode.

Next. in order to examine the structure irr
the x direct ion. we apply the Fourier inverse
t r a n s i o r m  t o  ( 3 . 1 2 ) :

h ( x , y , t )

I  . '-  .  \  l t , ( 1 ' , t ) e , , , d l ;

-  ik  F iL  i  u  o l9, ( j '  >  ) ,  ) t l ' , (  y  < ' ,  )1e" ' '  d  l t
-  (  rR  - :  i  l r u )  9 ( rR ,  k )

( 3 . 1 5 )

fo r  r ) )1 .

Because rr,  reaches i ts ntaximum r^ua atl ' ; : lxr,

which is the maximum growth rate of the rn-

viseid barotropic instabi i i t l ' .  rve should con-

s ider  the  fo i lo rv ing  ex t remes ins tead o f  (3 .13) :

( a ' )  l > ) r R - r r . l ) 0 ,

( b ' )  , o ) > r f ,  ( 3 . 1 6 )

where  r , f :1 -u* .

First.  we examine the case (a').  Because

vR=v! ,  the  in tegrand o f  (3 .15)  w i l l  have a
pole at /c:ko which is located near k, in the

compiex  k  p1ane.  Thus .  (3 .15)  i s  eva lua ted  ap-

proximately as

h ( x ,  y ,  t )

i l t ,aFiL i  i , . ,  "LQ,er)e ih " '

v " - - t t i n u

1 , .  l ; - l ; ,  r
l l l l l - l

I t . l o : : t ( t , ^ . k )

I m ( 4 . ) > 0  f o r , r = 0 ,

< 0  f o r - r { 0 .  ( 3 . 1 8 )

The contr ibut ion to the in tegra l  of  (3.15)
ftom other zeros of !D is expected to be small
for  I , r i )  I  because the imaginarv par t  o i  the
poles wil l be larger than that of /co. The con-
tribution from the zero of yR +ikLt is not con-
sldered, but it is probably smali according to the
results oi the numerical simuiation descnbed
in the next sectlon.

It is indicated from (3.17) that the structure
in the x direction is periodic with wavenumber
of  Re(/c")  = A.  and ampl i tude which decreases
as exp[- Im(lc") x] . Again we find a srmilar
structure to the n'rost unstable barotropic mode.
although thrs disturbance is the steady mode
f n r e e d  h r r  t h p  t o n o o r e n h r  T h i s  i s  e n  i n t e l c r t i' r - o _ * l  - *  " " - ' _ - _ " n g

result because the eigen-mode of the system
finally dominates without anv dependence on
the forclng distribution

In case (b'), the structure in the x direction
would strongly reilect the structure of the forc-
ing as long as ir does not vary srgnificantly in the
forced wavenumber range. This is confirmed by
the numerical simulation.

4. Numerical treatment

To verify the theoretical discussion of the
preceding section. we rntegrate eq. (2.2) numeri
cai ly  for  Fr=O.1(+3 ) .

We use a space-staggered and time-centered
grid and the grid resolutions in the .r and -y
directions are lx=0.41 and ;J_y=0.4. respectivelv.
The domain of  in tegrat ion is  - i53(15.  -10<

1'(10. and boundarl ' conditions ln the x and,t '
directions are cyclic and rigid wa1ls. respectivell ' .
The length of the domain in the r direction is
about twice as long as the waveiength of the
most unstable barotropic mode in an invlscid
tluld.

We consider a basic flow

669

t , '
I

z r  . )

( .13) As ment ioned in int roducl ion.  i f  Fr<1.  grolv lng

modes are unstabie barotropic modes onl l
( 3 '  I  7 )  (Sa tomura .  1981a ,  b ) .  Thus ,  u ,e  a re  ab le  t o  i i x

the Froude number to a number less than uni ty

wi thout  loss of  general l t l ' .where
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U ( Y ) : t a n h (

and the be1l-shaped
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oversimpiif ied to simulate the "Harada's vortel<".
we expect it to give some jdeas about the ibrma-
tion mechanism of the vortex.

EXP. 1: Shear flow with viscosity slightll,
larger than the resonance

Fig. 2(a) displays the structure of the pertur-
het inn veloc i f r r  er  r=J0.  Whi le the f low con-
verges at the upper-right and the lower-1eft sides
of the dent, the flow pattern is very similar to
the unstable nearly nondivergent disturbance
shown in Flg. 3(a) and (b) for an inviscid fluid
with a flat bottom; this disturbance is an un-
stable barotropic wave in essence. The scale of
the perturbation is much larger than the topo-
graphy and this ls one of the characteristics of
the near resonant mode. Further. we notice
that the perturbation decreases in its strength
graduallv away from the dent. It confirms the
approximate tormula (3.i8) qualitatively. The
dominant wavenumber oi this pattern. however,
appears to be one half of k,. This is due partly
to higher-order differentiation in the damping
term (4.3) and partly to finiteness of the domain.
We discuss it briefl,v in Appendix B. As a whole.
the structure and the largeness of the scaie men-
tioned above agree with the analytical treatment
discussed in the previous sect ion.

Fig. 2(b) shows the disturbed flow (Lr+a,i.t)at

t=30. where U=_Lr^tanhe,), and Lrn is twice as
large as the maximum value of a and tt in the
whole domain. We see a vortex clearly around
the dent. The horizontal scale of the composite
vortex is much larger than the dent. We should
note, however, U- is rather sma11 compared
witl i  a l imit of l inearization and. hence the
vor tex would be emphasized in th is  f igure.

At later t ime r=50, when the perturbation
becomes almost steady, the flow pattern similar
to the unstable barotropic wave becomes more
dominant (Fig.a(a)) and the scale of the com-
posite vortex appears to expand slightly (Fig.
4(b)).

It would be interesting to examine the ener-
getics of this flow. By a short and straigl 'rtfor-
ward calculation of (2.2), the energy equations
are written as

d K "- - ;  - i  h r .  h ' u  
' .  

h ' r ,  pu -  - ( r ,  r , .
A I

( 4 . 4 )

i 6 ( - t .  - 1 ' ) :

v )  ,  ( 1 . 1  )
dent with circular contours

- t

l R ' , a ' - 1 1 " '
( 4 .  2 1

*hete R16'+(-v{o!. In this model. we can
specifl, the center of the dent. (0ys), to any
n o i n t  i n  t h e  v  a x i s  T h e  n e r r m e t e r  a  d e i i n e s  t [ g

s c a l e  o f  t h e  f n r c i n q  I n  o r d e r  t o  s e n a r r t e  t h e

fo r c i ns  sca le  f r om the  resonan t  o r  nea r  r esonan t

modes which have wavelengths of the order of
10 .  we  se t  a=0 .5 .

In this section. we specily the damping term
AS

j  u : D Y t u

: i , : I ' v - I ' ( 4 . 3 )

! J a : U ,

where

r ,
v - _ _ + _

o.Y- o )' '
The formulation (4.3) is more reaiistic than
(3 1) The resonance phenomenon, however,
wil l change because of the different dependence
on wavenumber. In the present situation, it is
diff icult to determlne the crit lcal viscosity r.
preciseiy. Instead of using the deflnit iorr )t,-:
rmax, we define v. such that. if vlv", the am-
plitude of every dlsturbance decreases to zero
in the domain of integration. Then, it is possible
to estimate r,. by trial and error, and we find
0.25(r,"(0.3. In the foilowing discussion. the
cases (a ' )  and (b ' )  are represented by u=0.3.
r= i .0 .  respect ive ly .

Three numerical experiments are performed.
In exp.  1.  we speci fy  ys=0 in (4.2)  and r=0.3
This experiment wil l reveal the characteristlcs
of the near-resonant mode. In exp. 2, we also
speciiy r=1.0. This experlment wil l show the
non-resonant mode. Finally. in exp. 3. we again
set v=0.3 but

! t - -  5 + 0 . 3 1 ,
which describes the relatlve movement of the
dent to the basic flow. This experiment tests
whether the near-resonant mode remains in the
shear zone when the forcing moves away. This is
regarded as a simplified model which rougl-rly
simulates the passage of the front of the moun-
tain wind over a dent. While this experiment rs
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Y

Fie.  2(a)  Veloci ty  of
the center indicates a

X
disturbance,  (a.r ) ,  at  t=30
contour of  the topography

of erp.  1.  Dotted c i rc le at
h 6 = Q . 5 .

F i e . 2 ( b )
cen Ie r

) D" '  E  - r  t -  D  r  r  r -
) ,  L t \ E . t  E )  L t r L ,

where

Disturbed veioci t l ' ,  (L i+a.u) ,  at  r=30 of  exp.  1.  Dotted c i - rc le at  the
indicates a contour of  the topography A,=6.5.

K ^ :

and

D -

l i .

t ] ( ' '

"* -  [ l ,as
l r ;  - '

- a " ) d S

p ul,  are the perturbation kinetic energy and the

per tu rba t ion  po ten t ia l  energy .  respec t ive iy .  The

terms

;  d ( '  , -
. K z . K r , -  \ u , ,  ̂  

d S

r n d

t ^
I t ' , .P , ' ,  -  ]  i i , ( j l - -  ? "  )as

r ; .  o . Y  o I '
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i l E l E  -  s i t . 0

. : s : . r

Fig.  3(a)  Veloci ty  of  d isturbance,
0 . 1 .

the barotroplc instability' for Fr=

Fig. 3(b) Disturbed velocity, (U+u,t:), of the barotropic instability for Fr=
0 . 1 .

Vol .  o. l ,  \o.  5

Y

X
(a.r ' ) ,  of

represent the energv conversions from the mean
kinetic energy Kz ro KE. and tr, to P6, respec-
tively. The terms

.  K  r .  v - :  r  \  {  uY 'u  -  i .V :  r '  } dS

and

l l t  o ,

represent the dissipation of Ku by, viscosity and
the generation of P, by the topographic l lft ing,
respectiveiv.

The mean kinetrc energ_v can be divided into
two par ts  as Satomura (1981a) d iscussed.  As far
as the case we considered in this paper. however.
the rate of the inner conversion of the two parts
is found small and thus we do not discuss the
inner conversion.

Fig. 5 shows the energy diagram at r=50.

P,t- +it 'n4u-a s
r ;  - '  o x
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X
Fig.  1(a)  Same as Fig.  2(a)  but  /=50

Y

- L

X
Fig.  4(b)  Same as Fig.  2(b)  but  r=50.

It is evident that the perturbation is supplied
with energy mainly not from the topographic
forcing but from the mean kinetic energy. This
fact rs evidence that this mode is closel.v con-
nec led  w i th  ba ro t rop i c  i ns t rb i l i t v  and  th rs  i s
one of the characteristics of the near-resonant
mode discussed in the preceding section.

T h c  v n r r i n i r r ' " . d  r h p  d i r r e r o p n n p  n i  r h o  ^ p. . ^ r  u r l c r B s i l ! s  u r  u r s  p s f -

turbation f ield are shown in Flg. 6. We see that

the divergence exceeds the vort ici t-v" near the

dent but the vort ici ty comes to be dominant

awarv from the dent. Thus. as a gross feature.

the disturbed flow seems to be a barotroprc
vortex.

EXP. 2: Shear Jlow with large viscosity
Next ,  we show the veloc i ty  at  r=50 in F ig.  7.

It is clearly found that the scale of the perrur-
bation is much smailer than that of exp. 1. We
also tlnd that the divergence and the convergence
of the perturbation velocitlr is dominant. In fact,
the maximum of the divergene'e is tbund to
be more than ten times the ma-ximum of the
vorticitv. The absolute values of the veloclty,
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. l  1 . 5  K  _  2 . O  p _  i  2 . 1
< -  r \ E  < -  |  E  r ( _

r x . , v l l  57 .+  rK . ,P . r i  0 .5  l t ho .R l

Fig. 5 Energy diagram of disturbance at r=50 for exp.

l .

d ivergence,  and vort ic i ty  are.  however.  smal ler

than  those o f  exp .  1 .

The energl,  diagram is presented in Fig. 8.

This diagram indicates that the energy conver'

sion due to the Reynolds stress turns out to be

negligibly smail  compared with the dissipation

of kinetic energy. Alternatively, the potential

energy supplied from the topographic forc-

ing maintains the perturbation kinetic energy

through the correlatron between the divergence

and the surface elevation. These characterist ics

are what we expect of a non-resonant mode from

Journal of the lleteorological Society of Japan Voi .  64 .  No.  5

t1.re discussron in the preceding section.

EXP. 3 : Shear JTow over moving topographl,
The velocity of the perturbation is i l lustrated

in Fig. 9 at r=50. Ar thls time. the dent has
passed the shear zone and reaches the boundary
at -.y=10(+4). Thus. in aimost all the domain.
the topographrc forcrng ls so smal1 that it has
c n c ' n p l v  a n v  i n f - h r p n n o  O n  t h e  f l O W .  W g  f i n d ,

however. that a vortex is formed in the shear
zone and that it has a similar structure to the
unstable barotropic wave. This vortex began
growing when the dent approached the shear
zone and it turns out to be evident after the
dent left the shear zone. In order to explore why
the vortex is not diminished by the viscosit-rl.
1et us turn to the energy diagram presented in
Fig. 10. This diagram shows that the energy
conversion lK',Pi is less than half of [Kr,
r(n]. Because the dent is far from the vortex,
it can supply only l i tt le energy to the vortex.
Thus. the vortex probably receives almost all
t h e  k i n p r i n  p n e r o v  r h T n r r o h  t h e  e n p r o v  c o n v e r -

sion [Kr, Kg]. In other words. once the vortex

is formed by the dent. i t  extracts the kinetic

tr
14.s i l r  Kz,K.

V g R T I C I T Y
I I H €  :  5 0 , 0  t 1 ^ X  =  ? .  l E - 0 2

Y

(#t) The same caiculation
d o m a i n ,  r - ' ] 5 < , x < 1 5 .

sults changes little.

Fig. 6(a) Vorticity oi disturbance rt

rvas performed in a iarger
-20<t<20),  but  the re-

Y

r= i n  t o r  e r r r  I  Con ro r : r  i n t e r va l  i :  0 . 02 .
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Fig.6(b)  Divergence of  d isturbance at  r=50 for  exp.  1.  Contours are 0.02

0 . 0 4 , 0 . 0 8 , 0 . 1 2 .

67s

_�

I

Y

X
Fig.  7(a)  Same as Frg.  4(a)  but  for  exp.  2

enersv t iom fhe basic  f low and can hold i ts
strength against the viscous dissipation.

5. Summary and discussion

Through the use of the l inearized shallow
water equations. we have studied the response
of plane parailel t low to steadl' forcing. Both

analvtical and numerical studies were peribrmed
for  Fr(1.

The characteristics of t i.re disturbance are
summarized:
(a) If the basic l low is unstable over a flat

bottom. the same florv over small topog-
raphv is also unstable. The same disturb-
ance as that over a flat bottom (1.e. eigen-
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o . 2f , ̂., ^.,

Fig.  7(b)  Same as Fig.4(b)  but  for  exp.  2

6 . 3
<-
t h o , R l

the vortex remains in the shear zone. It has
a structure similar to that of the unstable
barotropic wave and aiso receives its energy
from the basic flow through the Reynolds
stress. This fact interprers rhe long life of
the vortex in the viscous fluid.

(e) If fr iction is much greater than the growth
rate, the structure of the disturbance re-
flects topographic forcing. The disturbance
receives its energy mainly from the forcing.

Encouraged by the result that the vortex
much larger than the forcing is created in viscous
shear flow, we wil l compare our disturbance
with Harada's vortex in two aspects: the spatial
and time scale of the disturbance. Of course.
the energetlcs represents one of the lmportant
characteristics of the disturbance in this paper.
But we cannot compare it with the observations
or the numerical sirnuiation because no calcula-
t ion of  energet ics has been done vet .

Now, iet us compare the orders of the spatial
scales first. As discussed in the Appendlx B. the
longest wave in the region should appear if
viscosity of the t-v"pe rrV'r acts on the waves.
In the real atmosphere or the ocean. a bastc
current whlch satisfies the condition that it
f lows two-dimensionally over the topography rn
question and has appropriate shear probably
exists oniv in a small region. This wouid provide

6 . 6
<_

l K e , V l

6 . 3

I K E , R ]

Fig. 8 Energy diagram of disturbance at t=50 for exp.
2 .

mode) grows exponential ly with t lme and

final ly dominates the steady topographrc

wave.

(b) I f  the fr ict ion equals the growth rate of the

unstable mode in the inviscld f low. the

eigen-mode wil l  resonate with the topog-

r a p h i c  t o r c i n g .  I t  g r o w s  a s  r  p o w e r  o f  r .
/ c t  I f  t h e  t r i c t i o n  i s  s l i s h t l v  s r e r t e r  t h r n  t l r e,  " /

growth rate. the flow is dominated by the
steady topographic disturbance whose struu-
ture is similar to that of the unstable baro-
tropic wave. The wavelength of the disturb-
ance is much longer than the scale of the
forcing, and it depends on the type of the
damping. This disturbance is supplied with
energy mainly through the energy conver-
sion due to the Revnolds stress.

(d)  When the dent  soes across the shear zone.
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Fig.  10 Energy diagram of  d isturbance at  t=50 fof

e x p . 3 .

the scale of the wave. In the case of Harada's
vortex. the wind from the mountains located
in the west of the plain has a large horizontal
scale -102km. It does not contradict the dis-
cussion in this paper.

Next, 1et us compare the orders of the time
scales. Numerical integration of this paper
showed that the time scale of the growth of the
disturbance is O(10) in a non-dimensional unit
(2.1). On the other hand. since the wind from
the mountains has a horizontal shear of the order

.  -  r  ^ - 4  - l  ,of  3x10-"sec- '  (see.  for  example,  F ig.  13 of
Kimura.  1986).  the t ime scaie of  2x10asec of
Harada's vortex also corresponds to O(10) in

Y

T. Satomura

I I i1l._ ,:_-l,Q. o

X

Fig. 9 Same as Fig. 4(a) but for exp. 3. The dent is going through tl.re bound
ary at J',=10 (the upper limit oi the figure ).

non-dimensional unit. Thus. both time scales
agree with each other.

In conclr"rding the paper, the author wishes
to point out the following as a seneralization
of the analyticai results: Even when the basic
flow is stable owing to the viscosity or the shear
itself, disturbances similar to the eigen-modes
of spatial scales different from the forcing
would be observed rf the forcing hes the seme
phase velocity as that of the eigen-modes. This
would be a reasonable generalization because
the discussion in section 3 can be general2ed to
include manv kinds of forcing. Some studies on
barociinic instabil ity over topography (Pedloskv.
1981 ;  Szoeke .  1983 :  Yoden  and  Mukougawa .
1983) support this generalization. although
they are concerned with the interaction of
neutral waves with topography in an inviscid
fluid and we are concerned with a viscous i luid
essentially. Further we suppose that the srmilar
disturbance wil l appear even if the forcing has
a slightly different velocity from that of the
eigen-mode, since !D(s, /r) would be also small
in this case. The fesults of Wakata and Lrryu
(1984), who calculated l inear responses of a
steady baroclinic wave over sinusoidal topog-
raphy with Ekman layers. support this surmise.
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Appendix A

Green's function

Letpl(v Jt,s') (i= 1 ,2) be two ilnearly independ-
ent  so lut ions of

d  f  I  dhp t  \ .
c ty1G- i ku f  c r ) ,  )

r  b 2  l
t F ;  L t l r , , _ 0 ,  ( A  l )|  ( s  - i  / c L  ) . r

which is the homogeneous part of eq. (3.5) and
co inc ides  w i th  eq .  (1 .6 )  o f  Sa tomura  (1981a )

by putting s=-ikc. The general solution can be
expressed by

p -  A S t , ( y ;  A ,  ̂ r )  - -  B Q " ( y  ;  k ,  s )  ,  ( A , 2 )

where A and B are constants. The explicit f 'orms

of /; around a singular point at v=1lc where
s+ikU(!, ')=0 have been given by Satomura
( 1 9 8 1 a )  a s

Qt -  ( y  -  1 t , ) t  i oo , (  - v  -  y , ) " ,

_  ( A - 3 )

Q " - r Q , l o - s ( t - l . ) '  P o b  " ( y  -  y , ) " ,

where an and b, are expansion coefficients de-
pendlng on fu and the profi le of U. and i is a
constant .

For there to be a norr-trivial solution subject
to the boundary conditlon (3.6) we must have

- o ( k ,  s )  = Q , ( -  a  ;  k ,  s ) r ! , ( a  ;  k ,  s )

- r i , ( . - a ; / c , s ) / , ( a ;  l c , s )  ( A  4 )

: 0 .

This serves to determine the discrete eigenvalues.
Next. define functions /, and gr, as

9 ' ( a  :  l t ,  s )  - r 1 , t ' ( .  a  ;  k ,  s 1 - Q  .  ( A  6 )

Now we can construct Green's tunction G(/,) ' r ,)

f rom ,c - r , ,g r ,  and J :

G 1 r ' , u , , . 1  t ' ( t  ' t ' ) . i { ' t < t ' )  ( A  7 . )
- : ( k ,  s )

where

lri"( I ;, t,t) ti;, (r < lc),

j  Q ' ( D Q " ( t " o )

\  Q, ( .v r ) , ! , ( . y - )

f o r  y ) _ t c ,
( A  8 )

lor y,:, yc .

Appendix B

Dominant scale and viscosity

Although the numerical resr-rlts in erp. I and
2 are generally consistent with the anaiyticai
results. the wavelengths of the dominant modes
are somewhat different from the analytical
estimatlon. The reason for this difference is that
we used the Ra-vleigh damping (3.2) in the
anaiytical examination and the viscosity of the
Laplacian t_'"pe (4.3) in the numerlcal integra-
t ion.  As d iscussed in sect ion 3,  the resonant
wavenumber for the Rayleigh friction is the
same as that of the most unstabie wave in an
invlscid tluid. for the strength of the friction
does not depend on the wavenumber (see Fig.
B l ) .  On the other  hand.  the ef fect  of  (4.3)

varies with the wavenumber. We may estimate
the viscous term as

v \ ) q =  - v a k ' q ( B -  t )

where a is a parameter that includes an effect of

the wavenumber / in the -rr direction. If perturba-
tions are sinusoidai also in the v directton. a
becomes

td"
( B - 2  )
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Fig. B1 Growth rates of barotropic instabiliry
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Fig.  B2 Grouth rates of  barotroptc instabi l i ty  and
damping rates of  v iscosi ty ' ,  a k2 for  a=1.25 and 5.

Fig. 82 shows the growth rate kci of the un-
stable barotropic wave in an inviscid fluid and
also the function r;a&2. Waves shorter than the
resonant wave. the wavenumber of which rs
defined by the crossing point of the two curles.
damp and ionger ones grow with time. In the
llnite domaln used by the numerical integration
in this paper. the longest wave in the domain
decreases most siowly. It is twice as long as the
most unstable wave rn an lnviscid fluid and. in
exp. i and 3. it is the nearest wave to the re-

sonant wave. Thus, the longest wave dominates
in those experiments.

t ,^C
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