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L. Introduction

In one of previous papers (Satomura, i981a:

here after referred to as S1), stability problems

of two types of shear flows were studied: One

is a plane Couette flow bounded in both sides
(case I) and another is the same flow but un-

bounded in one side to ccnnect with a rest fluid
(case II). He used analytical solutions expressed

by power series and calculated eigenvalues and

eigenfunctions with high accuracy. He con-

cluded that, when Froude number is greater than

unity, gravity waves are destabilized even by a
constant shear flow, and thus they are not related
with the existence of inflection point of the basic
shear. He also concluded that excited gravity

waves can radiate from the shear zone in the
case II .

Also Blumen, T)razin, and Billings (1975) had
found unstable waves similar to those of S1, but
their discussion about the characteristics of the
unstable waves had been insufficient. One of the
purposes of 51 was to ciarify the nature of the
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Abstract

Using a channel model in a shallow water, we numerically consider characteristics of
finite-amplitude gravity waves which were found to be unstable waves in a constant shear
flow by the linear analysis. Numerical integration is performed at Froude number equals
to five for both inviscid and viscous case. In the inviscid run, it is shown that the first
appeared mode has the growth rate and the structure which are the same as those expected
from the linear analysis. Energy budget shows that disturbances extract their energy from
the additional part of the mean kinetic energy as in the linear anaiysis.

In the viscous run (Re:3000), it is shown that disturbance energy reaches a quasi-
steady state. Energy budget shows that energy is supplied to the mean kinetic energy,
converted to the eddy kinetic energy, and then dissipated by the viscosity acting on the
disturbances. Momentum budget indicates that these gravity waves can mix the averaged
momentum permanently.

At a later stage of time integration, the disturbance energy oscillates. A linear stability
analysis for the quasi-steady state is examined, and it shows that the oscillation is produced
by unstable sub-harmonics.

Shape of disturbance depth near the boundaries and change of mean depth are also
discussed.

unstable mode. Further comparison among 51
and Blumen et al. or other studies was presented
in 51 and Satomura (1981b) where he used a
piecewise-linear flow unbounded in both sides
and compared the results with those of Drazin
and Davey (1977).

In the previous paper 51, a curious nature of
the unstable wave was pointed out, that is, the
unstable wave growing in a constant potential
vorticity field can not change potential vorticity
at all. It means that a change of zona-l mean
flow, Aa/ dt, does not occur unless zonal mean
depth h changes. But, when disturbances dis-
appear for some reason, Z must be constant and,
thus, no change of n will remain. Then, a
question arose whether the unstabie waves can
permanently change momenta of basic flows. The
analysis of 51, however, was a linear theory, and
only suggestions for an answer of this question

was given.

A purpose of this paper is to investigate the

effects of nonlinearity and viscosity upon the

unstable waves, and to exarnine whether perma-
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nent redistribution of momentum occurs or not.
A next step of a iinear analysis may be a

flnite ampiitude (but weak nonlinear) analysis.
But, for the channel model we use, the critical
wavenumber which corresponds to the fastest
growing mode at the critical Froude number
(=2) is inflnite. This fact makes the finite ampli-
tude analysis difficult. Moreover, no experiment
nor numerical simulation, which guides us into
an appropriate hypothesis such as shape assump-
tion, has been performed. In this paper, we will
integrate basic equations rrumerically and present
results of integrations.

In the next.section, we p.resent shallow water
equations as basic equations and describe numeri-
cal channel model. A constant shear f low is
used as a basic flow in the channel. Thus, the
model is the same as the case I of 51. In section
3, results of inviscid run are described at first,
and, then, results of viscous run are discussed.
Some of the results are the same as thcse sug-
gested by the linear theory 51 but some of them
are not. Summary and conciusions are presented
in section 4. A detailed expression of flnite-
difference scheme is given in appendix A, and a
derivation of energy equations is given in ap-
pendix B. In appendix C, viscous terms in a
shallow water equations are derived.

2. Basic eouations and numerical model

We shall consider a plane parallel flow of a
shallow water. The model described below is
schematicaliy shown in Fig. 1. The fluid is
bounded by two vertical walls, assumed to be
rigid and to be separated by a distance lox as
in the case I of 51. Cartesian co-ordinates are
deflned, with r* along the walls and y'' normal

u o

1 The model of numerical integration. Dimen-
sionless width is 1 and dimensionless basic florr
varies from 0 to 1. Surface elevates normally
to the paper.
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to the walls. The corresponding velocity com-
ponents are u+ and zr3, respectiveiy. The fluid
depth is h* and assumed to be 11 at rest. By
introducing a velocity scale Us, dimensionless
variables are written as

(r, y) :  (nx, y*) /La*, t  :  t*U o/ Lu*,

( u , a ) : ( u * , o * ) / U o ,  h : h * / H  ,  ( 2 . 1 )

where variables without asterisks are dimension-
less.

The two dimensionless parameters relevant to
the present problem are the Froude number Fr
and the Reynolds number Re:

F":Uo/J gE,  R": (JoLyx/v,

where g is the gravity acceleration and r, is the
coefrcient of kinetic viscosity and these quantities
are assumed to be constants. Since it is not a
subject of this paper to study whole aspects of
high speed flows, we only consider Fr:5 for all
cases, and Re:3000 (viscous case) or inf ini te
(inviscid case).

Then, the dimensionless equations of motion
and continuity in a shallow water are

a v a v a v l _ , 1 _
a ,  

+ u  
a * + o  a y +  F ;  

I  h :  
R "  

o  '  1 2 ' 3 1

(2.5a)

(2.5b)

where Z is the velocity, F is the viscous term
and

-  / a  a \
'  

\ d r '  A y ) '

The channel width, I_],, is unity, and boundary
conditions at the walls are

D : O  a t  Y :  - 1 / 2

in the inviscid case, and

D : O ,  u -  + 1 / 2  a t  y :  + 1 / 2

in the viscous case. In the r direction, the
channel length is Lu, and fluid is assumed to
continue cyclically.

The initial conditions fcr time intesration are

u : Y l a u ,

1 ; : 0 ,

h : l + a h ,

(2.6)

where da and 6h are small random perturbations,
and are connected with each other by a following
relation:

?tu 0u . 6(6u)
A *  

-  
A , '  

' - -

q = Y :  ,  . 3 )  : - 1 .  e ' \
n  1 + 6 h
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Above relation is set to bring the numerical

model close to the analyt ical model of S1' be-

cause, in the linear theory, no potential vorticity

is added by perturbations superposed on a

constant shear flow (see equations (5.3) and (5.4)

o I  5 I  ) .
Finite-difference scheme for the space co-

ordinates of (2.3) and (2'4) follows Arakawa and

Lamb (1981). I t  conserves total mass' energy'

and potential enstrophy q2l2h. Some of the rea-

sons why we choose this complicated scheme are

that zero potential vorticity of the disturbance

is an important characteristic, and, thus, there

is a risk that non-physicai change of q by a

finite-difference approximation cause a serious

error. The explicit form of the finite-difference

scheme is shown in appendix A.

The scheme of time difference is the forward

difference for the viscous term and the leap-

frog scheme for the other terms.

The number of grid points in the r and the y

directions are 64x20 in the inviscid case, and

32x10 in the viscous case. Grid intervals are

d :  /n :  / y :0 .05  and 0 .1  in  the  inv isc id  and

viscous case, respectively. Thus, the domain of

the present numerical integration is that Zo=

3.25 and Ly:1.0 in the inviscid case, and that

Lr :3 .3  and ly :1 .0  in  the  v iscous  case in

dimensionless unit. These values of Zr's are

about twice as long as the wavelength of the
most rapidly growing wave for Fr:5 in 51. So

far as parameters used in this paper, errors by

the finite-difference approximations are not
serious, and, thus, we suppose that the numerical
solutions indicate characteristics of the true
solutions.

3. Results

In this section, results and discussions of
inviscid nrn are described in the first subsection,
and those of viscous run are presented \n 3.2.
In both runs, the Froude number is fixed to five,
and only the Reynolds numbers are different be-
tween them.

In the following discussions, t I denotes

zona l ly  averaged quant i t y  and (  ) ' : (  ) - f  I
is the deviation from it.

3 .1 Inviscid case (Re.-> a )
When Re tends to be infinity, growth rates

and structures of the numerical solutions should
be the same, at least its initial stage, as those
of the linear theory. Fig. 2 shows time variation
of potential energy of each Fourier component.

_-- higher nodes

nkO for n>5

(n-1/21k0 for n>l

o 5o 

,* 

too 150

Fig. 2 Time variation of potential energy for each
Fourier component in the inviscid case. Thick
solid line indicates a srowth rate o:0.059

From this figure, it is found that the growth

rate of the first appeared mode is 0.059, and is

in good agreement with the theoretical value

0.0585. Of course, the wavenumber of the first

appeared mode, ftg:3.8, is the same as that

indicated by the theory.
Since the Froude number is greater lhan 2,

the time when nonlinear effects become dominant
is also interesting. Fig. 2 indicates that higher
modes /c:2k0, 3k0,. .  . ,  are excited by the non-
linearity and their amplitudes can be seen only
for the later stage of the run (/>150). Thus, the
linear stability analysis retains its usefulness even
for Fr:5. When we numerically integrate the
equations (2.3) and (2.4) to a little further beyond
t:19O, the result has no longer a physical mean-
ing due to the errors which increase as the
amplitudes of the higher harmonics of the order
of grid sizes become large.

The structure of the disturbance at t:1.43.165
is shown in Fig. 3. It js a typicat structure in
an early stage of the development of the disturb-
ance, and it also agrees well with theoretically
composed one: phases of troughs and ridges tiit

- - - - -  2 k o

-- -  3k0

9
E
o
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to the positive r direction with increasing y, and,
the maxima of divergence and convergence are
at the left side (the smaller r side) of the troughs
and of the ridges respectively near the wall at
, , : 1  /  1  . - . 1  , , ; ^ .  r ' a r sa  nea r  t he  wa l l  a t  y :
f  l t  ' )  u t t u

-I/2. The total pattern is similar to the gravity
waves in a channel.

Fig. 4 shows a typical r-variation of the
disturbed depth, H, at y:9.47t for three stages.
In the early stage (t: I43.165), h' varies
sinusoidally and symmetrically with r. But, as
the amplitude increases, asymmetry appears in
an intermediate stage (1:165.165), and a shape
similar to a shock wave is formed in a strong-
nonlinear stage (1:187.165). At this time,
perturbation Froude number F"o, which is de-
fined as F,p:Uo/J gFl by introducing char-
acteristic velocity of wave pafi Uo, is nearly
equal to unity. Inspecting the asymmetry of h'
in Fig. 4 closely, we notice that lAh/ 0rL is
larger in the left side (the smaller a side) of
peaks than the right side (the larger r side). It
suggests us that, on the analogy of formation of
shock waves, waves near the wall at y:l/Z are

4 Disturbance depth ht at y:Q.475 for three
values of / in the inviscid case.
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propagating to the negative r direction relative
to the f low. Near the wall  at t :- l /Z, on the
other hand, waves are supposed to be propagating

x 10-3
2

-0.4 -0.2

dnv

(d)

Fig.5 (z) Zonal mean depth ft  for t :165.165 and
t:187.165 and (b) values of terms in the equa-
tion of i for t:159.66 in the inviscid case.

Journal of the Meteorological Society of Japan

0 , t

r  -  A x I s

Fig. 3 Structure of disturbance at t:1.43.165 in the inviscid case. Arrows denote velocity
(ur,ut) and solid iines are contours of h:1*/z/. Contour interval is 0.02.
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to the positive r directior.r. What are mentioned

above confirm the discussion of 51 about Figs.

3(a) and 4(a) of that paper (p. 157-158), and

are consistent with the conclusion of S1 that

the unstable waves are destabilized gravity waves

in a ehannel.
Fig. 5(a) depicts zonal mean depth h at t:

165.165 and r :  187.165.  We see tha t  zona l

mean mass concentrates on the center of the

channel more and more with time. To find the

term which produces this concentration, let us

examine the equation of ft. It is written from

T. Satomura L )  l

- (rru+i iT)

- - - - - ( l ' "1

- ' - ( h ' u ' )

(2.4) as
^ 7
o n  o  = _  o  -
*+ i -no+ i -h 'a ' :0 ,
ot oy oy

(3.1)

At the init iai  t ime ir:O and Z:1, thus the

first term in the left-hand side of (3.i) should

be balanced with the last term. The last term

can be evaluated by the eigenfunctions presented

in 51, and is positive near the center of the

channel and negative near the walls. Thus, the

linear theory predicts that h should become

shallow with time near the center and deep near
the walls. But, what happens in the numerical
integration is opposite. An example of vaiues

of terms of (3.1) are shown in Fig. 5(b) for the

numerical solut ion at t :159.66. (Small  scale
disturbances may be hardly related with physical
phenomena because the truncation error is up
to 10-4.) We f ind that the last term of (3.1)

is the same sign as the linear analysis, but the
second term, neglected in the linear analysis('F),
controls the time ihange of ll. .l-his nature does
not change through the numerical integration
except at the eariiest time.

Fig. 6 shows time variation of momentum
averaged in the half area (abbreviated to MHA),
which is defined as

<ni>:<ha+T7):2\ hidy. (3.2)

From the equation (2.3), we obtain a following
equation for (Ti) as

(*) Jf we assume

olu nh( u' ' ! '  + r 'o^!-\ .
o I  \  d x  0 y /

the second term of (3.1) can be evaluated and
is consistent with the numerical results shown
in figure 5(b). We cannot evaluate, however,
ha directly, but only afri/at. tnd, dhu/Ot wtll

affects only the higher order trend a4/ AP.
Thus, it seems appropriate to neglect the second
term of (3.1) in the linear theory.

Fig. 6 Time variation of the half momentum MHA
in the inviscid case.

/ ?  ? )

Thus MHA is changed by the momentum flux
from the '�upper' half zone (0<y<I/2) to the
'lower' half zone (-t/2<y<0). From Fig. 6, the
'upper' momentum decreases with time, i.e.,
momentum is transported to the 'lower' half, and
redistributed. It is also found that most pafi of

the decrease of MHA is t77). These properties

of momentum change are consistent with those
in 51 and they also give a hope for a permanent
change of momentum by the unstable waves
under viscous eltects.

The energy balance at t:165.t65 is shown
in Fig. 7. A detailed derivation of the energy
equations and definitions of symbols are given
in appendix B. This four box diagram indicates
that the disturbance kinetic energy 1(' receives
energy through the tKKt transformation. The
disturbance potential energy F receives energy
through IKP'I and returns only a little energy
to the mean kinetic energy K. It is also found
from Fig. 7 that the total disturbance energy
K + P':33 x 10-5 and equals to the absolute
value of the additional part of the mean kinetic
energy Ko. The relation,

K'+P'+K' :O,  (3.4)

was derived in 51 under the condition of the

. a _
|  &a+h 'u ' ) :2 lhua1, .o .
o t
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t : 1 6 5 . 1 6 5

x  1 0 -

-  1  tK ' .P ' l

Fig. 7 Four-box energy diagram at l :165.165 in
the inviscid case.

constant shear flow, and it means that K" plays

an important role in the energy budget. The

fact that (3.a) is satisfied in good accuracy in

numerical integration means that the total nature

of the finite-amplitude numerical solution closely

resembles the characteristics of the eigenfunction
in 51. A projection of this interesting property

to the momentum budeet is the fact that

| <F7 > t >> | (.h n> - o.2s l.
3.2 Viscous case (Re:3000)

In this subsection, results of viscous run for
Re:3000 are presented. Before the results are
shown, it should be took notice that the viscous
term F is rather unusual, and it is expressed as

F:(F", Fi ,
where

(3.5)

F,:+l !(zh-T" \+*{n( 2Y-*: ')} l  ,
h l o r \  d f r /  0 y t  \ d y  1 f r / ) _ l

(3.6)

t r  - l -  6  l r ( A u  a o \ l  o  1 " , 6 u \ )f  u :  ,  -  ( / l [ - -  ^  l ) r - .  l z n  ^  ]
f t - d r l  \ o y  6 r ) ) '  a y \ - " a y l l '

(3.7)

These forms include effects of the free surface
on stress tensor. Detailed derivation of (3.6) and
(3.7) is given in appendix C.

Fig. 8(a) shows time variation of total energy
of disturbances ,K'*P and Fig. 8(b) shows time
variation of potential energy of each wavenumber.
Nature of both time variations for t)850 depends
strongiy on both the grid intervals of space dif-
ference and the definition of the potential
vorticity at the walls. Thus. we will not discuss
the results for r)850, although numerical inte-
gration can be stably extended for a long time.

From these figures, following aspects of time

Iournal of the Meteorological Society of Japan Vol. 60, No. 1

l fR.K' � l
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l
'1r'

variations are seen:
(a) At first, disturbance grows exponentially

and i ts growth rate o=0.036 and wavenumber

fto:3.8. These values are in good agreement
with the values estimated by the linear theory
(ot=0.032<*), ko: 3.8, respectively),

(b) Higher harmonics rrzith wavenumbers 2k6,
3ko, 4ko, . . ., are excited one after another by
nonlinear effects, and viscosity stops growing of
disturbances. (240 < t 5300)

(c) Energy of disturbances decreases and
reaches a quasi-steady state. (30O<l<500)

(d) Modes whose wavenumbers are (n-1/2)ko

grow with oscillation, although disturbances with
wavenumbers  nk6 ,  where  n :0 ,  -+ -1 ,  +2 , . . . ,  a re
still in quasi-steady state. (5003t<700)

(e) Ampli tudes of (r?-1l2)ft6 modes become
large and osciliations both of the potential energy
of nke modes and of the total disturbance energy
become evident. (7N<t)

The stages (a)-(c) are rather ordinary char-
acteristics. But, in the stages (d) and (e), an
interesting feature of growing oscillation appears.
Fig. 9 is a close-up of Fig. 8(b) for 469<t<522.
It shows that the period of oscillating mode
T:9 and the phase of ko/Z mode is earlier than
that of 3/2ko mode abont x/2. It also shows
that the amplitude of ft2 or ks/2 mode is about
1.5 t imes as large as that of 3/2kn mode. On
the other hand, no osciliation is looked in nks
mode from this flgure. But, from a much larger
magnified figure (not shown), it is found that,
at ieast, the potential e.nergy of ftg mode is
oscillating in the same crder of the amplitude
as that of k0/ 2 mode and is out phase with
ks/Z mode.

Then, why do ks/Z and 3/2ko modes grow?
And, why does their potential energy oscillate
with that period?

In order to answer above questions. let us
examine a linear stability of the quaslsteady
state.

As the first step of the analysis, divide the
physical quantities into two parts as

t'r'r The growth rate o1 is estimated by following
equation

L 2 L 1 2
O t : O i - " ; '  ,

-t(P

where o,. is the growth rate in the inviscid iinear
theory, fr and / are the wavenumbers in the
r and y direction respectively. Here, we assumed
that eigenfunction is the same as that of the
inviscid linear theory and that viscous terms are
expressed by the usual Laplacian form.
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Fig. 8 Time variation of
Fourier component for
0 .036.

T. Satomura
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o)
(a) total perturbation energY
Re:3000. Thick solid line

and (b) potentiai energy of each

in 1b) indicates a growth rate o:

L J  )

'iii
1[, ,

z

z

E
&

I / : V ( o )  + v ( 1 )  ,  h : h Q >  + h ( r )  , (3.8)

where superscripts (0) and (1) indicate a basic

state and infinitesimal perturbations, respectively.

The basic state is assumed to be composed of

three parts as

V (o) :  Vo I YrcLkon * conjugate term'

hQ>-_6ho*hp'&orlconjugate term, (3.9)

where subscripts 0 and 1 indicate the zonal part

and the wavy part, respectivelY.

We also assume that perturbation quantities

are written as

y <r> :  (Y t  n,  < + )eLkon 
/  2 + V t  72,  c *  pxLk o '  /  z)eL' t

|  (Vtn,  ( - )eLko' /2 + Vzp,  a-p31ko/2)e-1 ' t

*conjugate terms , (3'10)

h<D :  (ht  n,  sgLkor/2 I  ht1z,  t .+>e31kot/2)e1' t

a (hr  n,  ;prkot /2 I  hz 1r ,  r - t237kot /2)e-1ut

+ conjugate terms .

whero subscrlpts 1/ 2 and 3 / 2 indicate ft6l 2 mode
and 3kr;/ 2 mode respectiveiy, and subscripts (t)

and (-) indicate signs of frequencies. This

assumption is appropriate if Fourier expansion
of perturbation quantities converges rapidly. It
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Fig. 9 Close-up of Fig. 8(b) for 496<t=522.

would be also suitable if eigenvalues and eigen-
functions do not change significantly by includ-
ing higher modes such as -+5ko/ 2. The variation
of sub-harmonics, -+k0l2, are examined by re-
moving 1-3ko/ 2 modes instead of including
higher modes, and it is found that thev change
only a little. Thus, the ciosure assumptions (3.10)
and (3.11) is not a poor approximation.

Now, using (3.8) (3.11), perturbation equations
are obtained from (A.1)( '") as

*  i a V  t  n , , i : 1 , +  q o n  x  V  r  n ,  <  r >  I  e t k  x  V l  t  p ,  a . - .

+ qrl  k x frr rr,  r*,  t  q, n, <*>k x to( - )  ( - )

* qi t  12, ;1k x t  t  I  qs 12, <*>k x i l  t l

* iroVs /2,(.r) + qok x tr rr,, *, * q * x f ,,r,r*,

*  qsp , r+1k  x  Vo*  q tp ,1* 'k  x  t t

+ f  ( fove , r . , ,  L  V  tV t  r , , - ,+  
f i  

l r  r , r , , . -_ , )

:*{#- (*]).; ' � ',,,., '-, (3 14t

+ iahz tz, l!)+ ! a, n, i:, + 
$- 

0,,,,,,*,,: o,

(3.1 5)
complex conjugate,

*  F  
\YoV 

t  n ,  <* ' ,  *  V  tV  I  t  p ,< - ,  +  Y  JVs n ,  
;  _ )

. 1 ,  \  1  r a ,  / r t 0 \ r ) _ _t  p  ht  n . , ,_ , /  :  
a t ; ; r_  \Z )  |n , , , . , -_) .

(3.12)

i k o ^  o  ^
! t o f i 1 1 2 . 1 * , + 7  U t t 2 . , . _ , , - f  -  ? ' t , z . r =  : U .

where a dagger denotes a
* is a vert ical unit  vector,

to : ( t t t ' )o ,

t , :@Y) , ,

( - )  ( - )
l h 1 p , 1 y ; � V r ,

(3.16)

(3.17)

( - J  ( - )

(3.19)

Vrn ,<+> :  hoY tp ,<+>  I  h rV l  t p , r - � 1 i  h iYzp , l * 1

*  h t  n ,  c + > V o  *  h t  t  n , ,  - r V ,  *  h s  / 2 , (  *  ) y  J ,
( * ,  ( + )  ( _ )

(3.1 8)

t r rr, r*, : hoY z n,< * > * hrV t n, c, > * he p, 1 *',V x

(3 .13 )

('r) The reason why (A.1) is used is that we will
use a finite-difference scheme instead of the dif-
ferentiation tvith y, and that it is easier to make
an energy conserving scheme from (A.1) than
from (2.3).

l f i k o  A
S |  /2 ,  

l : ) :  n  l -  
o '  /  2 ,  (a+ 

)  
-  

Z y u t  /2 ,  (  +_)

1 ( ,  / i k o  o  \ t-  
h "  \ n t \ ,  2  

u " ' " , - '  - -  u t " ' , - ; )
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(3.20)

235

1 ,3iko ci
Q l , z , . ' t -  /  J  -  a 3 / 2 , '  - T  u z / 2 , ' .

n o a  z  o y  ( - .

|  ( ,  / i k o  a  \-  ,  \ n t l  ^  D t , z . . - t - - L l t t z , r - t  l
n o l  \ z  o y  t - /

A u o ,  )  2  A u o , ,  I-  ^  l 1 l t Z ,  - r I - -  ^ - 1 1 1 1 1 1 , 2 , , .( ) y  - )  n 0 -  o y  . - - l

(3.2r)

In equations (3.12)-(3.17, Vo, ,",  qo, and ql
are directly calculated from the grid data by
Fourier transformation. In equations (3.20) and
(3.21), square terms of the wavy parts of, the
basic state are neglected, because the wavy parts

Tabie 1 Frequency of oscillating modes. Frequency
of energy is twice as large as these values

NT,, --r ical
Wavenumber ,'-.'::'-:,  ' , . rs ,  . t io  n

Stabi l i ty
analysis

are as one order small as the zonal mean pa.rts.

By using finite-difference approximation to the
differentiations with 1', and by using the boundary
conditions for the perturbations

V r p , < + > : Y z p , 1 a 1 : 0  a I  Y :  + 7 / 2 ,

equations (3.12) (3.15) can
as

A b : a b ,

(3.22)

be written formally

(3.23)

where D is the eigenvector of A to be determined
and it describes perturbation field, and Z is the
coefficient matrix of finite-difference equations.
Then, ro and D can be obtained as a numerica-l
solution of the eigenvalue problem (3.23), and
the results are shown in Table I and Figs. 10
a n d  1 1 .

As seen from Table I, the difference between
the eigenvalue and the frequencies found by the
numerical integration is small for the real part.
On the other hand, the imaginary parts of the
frequencies of numerical integration are three
times as large as that of the eigenvalue, but
disagreement between them is supposed to be
not so serious that we must seek another cause
of the growing oscillation.

It is worth noting that the real parts of the
phase velocities of the | / 2ko mode ( : -+- 9. 1 9

, . / 3 i k o  d  \l n r l l - - ; - ' a 3 2 '  .  - - u i . 2 .  - ' I- )  o y  . - /

A u o ,  )  2  1 u o
_  _  n .

( )y  . -  )  ko"  uJ

x  (h1hI  t  p ,  r ,  >  +  h  r I  ha  p ,  r *  r )11 ,
( - )  ( - )  _ .1

ko/2

3ko/2

0.36 +0.018t
0.36 + 0.018t ) 

o.,r*o.oou,

I
t

' r  
J , ,

. ,  
i  \a l

I I
: I
: I
i t z

i /: l

-\

l l r
I  - x  0  z - n  0  E

Fig. 10 Amplitude (left half) and phase (right ha10 of eigenfunction for (a) exp{i(ku/Z-
orr)) mode, 1b) exp{i(k6l2 * art)} mode, (c) exp{i(3ks/2- at)} mode, and (d) exp
{i(3kn/2*at)} mode. Solid curve is the eigenfunction of 7,cr), dashed curve is that
ol u(r), and dotted curve is that of o(1). Phases indicate the maximurn values of each
eigenfunction.

(b)

I
I

I
I
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from the numerical results and -+0.22 from the

stability analysis) are almost equal to those of

the linear inviscid theory, 4-0.225 (see Fig. 3(a)

of S1). This fact suggests that a mechanism

similar to a resonance is acting, i.e., neutral

eigen-mocies are likely destabilized resonantly by
energy supply from the basic state, especially
from ft6 mode.

Amplitudes(*) and phases of eigenfunctions

are shown in Fig. 10. The relation between the

location of the maximum amplitude and sign of

the phase velocity of ko/ 2 mode agrees with the

discussion of 51 (p. 156-157), i .e.,  the mode

which has a phase velocity faster than the y-

averaged zonal flow, which is 0.5 in 51 and 0
in this paper, has a large amplitude near the
wall  at y:-1\/  2 and vice versa. This agree-
ment supports the suggestion of the resonant
destabilization described iittle earlier.

For 3/2ko modes, the relation between the
amplitude and the phase velocity is reversed.
It might be explained that these modes correspond
to the destabilized neutral modes which exist
along neutral l ines throueh (1.1) mode and (1.2)
mode or the l ine through (1.1) mode and (2.1)

mode of 51 (see Fig. 3(a) of S1). But, such
correspondence to the neutral modes of 51 is
worse than ftnl2 modes.

Fig. 11 depicts time variation of the potential
energy calculated by eigenfunctions. The reason
why the potential energy oscillates is as follows:
There are two waves in each wavenumber and
one of them propagates to the positive s direction
and another wave propagates to the opposite

c.

0 . 1

@
0 5 1 0

. f i m e

Fig. 11 Time variation of potential energl' of the
eigenfunction. Solid curve is ks/2 mode and
dashed curve is 3tsl2 mode. Absolute value
of the potential energy is arbitrarily.

(t') There is a small difference of the maximum
ampiitudes between ftsl2 modes and also be-
tween 3ks/2 modes. The cause is an asymmetry
of the basic field.
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direct ion (see equation (3.11)). For simplici ty,
the perturbation depth of a wavenumber k rs
re-written as

h: hrca>eL(kt-@t) + ht 1e)e-1'(ku-at)

+ ht<o>eL'r '*") l  l l l  rrrrg-L(kt+at) ,  (3,24)

where lz1 and h2 are the amplitudes. Then. the
perturbation potential energy P.E. of the wave-
number k becomes

( r/2 r 1/2
P.E. rc  \  lh f  dye , l  t l l , ' ,2  t  ihz tz )d t

)  - r / 2  )  - t  / 2

r  r /2
+2\ ReaI(hthzlezi ' t)dy, (3.25)

)  * r /2

where Real ( ) indicates real part. The second
integration of the right-hand side of (3.25) causes
the oscillation with a half period of the original
waves. Physically, this term comes from the fact

that two waves are in-phase and out-phase
periodically owing to the propagation in the

opposite direction with each other. If hr: hz,

these two waves form a standing wave. Of

course, the sum of the potential energy and the

kinetic energy of the wavenumber should be a

constant if the waves are linear and neutral.
Hence, the oscillation of P.E. is an apparent one,

in this sense. But. waves . in our case are growing

inodes and the perturbation total energy oscillates
due to the oscillations of a and a, i.e, the oscil-

lation of the Reynolds stress. This oscillation
of the disturbance total enerqv becomes obvious
for t27N in Fig. 8.

As shown in Fig. 1 1, the phase of the potential

energy oscillation of 3/Zkg mode lags behind that
of kx/ 2 mode, and it is the same tendency as the
results of the numerical integration. The value
of the phase lag is, however, about tr / 4 and rs

about a half of the numerical results. The ratio
of potential energ-y of 3/2kn mode to that of the
ko/ 2 mode is also smailer than that of the
numerical results. But, we may regard that these
differences are not crucial and that these dis-
agreements can be reduced by including the

higher harmonics both 2ko, 3k0,. . ., in the basic

state, and 5/2k0, 7/2k0,. .  . ,  in the perturbation

structure.

From the above discussion we interpret that
the oscillations shown in Figs. 8 and 9 are
produced by the oppositely propagating waves
destabilized by both the zonal shear flow and
the steady disturbance of the wavenumber k6.

The structure of the disturbance at t:495 is
shown in Fig. 12. It is the structure in the quasi-
steady state where the viscosity piays an im-

Journal of the Meteorological Society of Japan
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Fig. 12 S,tructure of disturbance at t:495 for Re:3000. Arrows denote velocity (u',u")

:rnd soiid curves are contours of h:h*ltt. Contour interval is 0.02.

L ) l

0.51

Fig. 13 Disturbance depth
3000 a t  t :495.

ht at r:0.45 for Re:

t-l
l l T T M t r  _  , 1  O q  '

- ! . : u  - 0 . { !  - 0 . 3 0  - 0 . 2 !  - 0 . 1 C  0 . 0 0  J . i 0  0 , 2 0  O . : O  O , t O  r . : - C
T - A X I 5

Fig. 14 Zonal mean depth h for Re:3000 at
t:495. The ordinate is magnif ied by ten t imes.

portant role, but it is still similar to the structure
of the linear theory S1. The asymmetrv of the
maxima and minima of depth near the walls are
emphasized by a variation of h with y, which
is shown in Fig. 14. (Note that a contour indi-
cates a totai depth h+h'),

Fig. 13 shows the disturbance depth fr, at v:

0.45. It is seen that it differs from a sinusoidal
variation, but, due to the viscosity, the ampli-

tudes of higher wavenumbers are not large. Com-
pared with the inviscid results at t:187 .1'65
(see Fig. 4), the shape similar to a shock wave

is disappear and symmetry between right and

left sides of ridges is held better.
The zonal mean depth h at t :495 is shown

in Fig. 14. We see that & has i ts maximum near

the center of the channel and the minima near

the walls. It is the same as the results of the
inviscid run and is also an opposite tendency to
the supposition from the linear theory. The rea-
son of this opposite tendency is the same as that
in the inviscid run. Of course, the mean depth
is also quasi-steady about this time and oscillates
when oscillation amplitudes of disturbances be-
come large (t>750).

Fig. 15 depicts t ime variat ion of MHA.
Decrease of MHA is abott 2Va in the quasi-

steady state and the contributions (hD and
(h'u'> arc almost the same. Thus, we conclude
that, in a viscous fluid, unstable gravity waves

T
0 .005 r

MHA for
variation of the half momentum

Re:3000.

?

_l

s-i

1
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Re = 3000

Fig. 16 Four-box
Re:3000.

ener,ey diagram at t :495 for

can cause a permanent change of the momentum
in spite of the uniform vorticity of the initial
basic field. For /)750, the oscillation appears in

(ha+"i-'l>, but the amplitude of the oscillation

of (hf i  is much smaller than that ot (TV).
It indicates that the energy conversions among
oscillating modes are almost closed within the
disturbance energy K, P', and the additional
mean kinetic energy Ko. It also indicates that
the relation (3.4) is satisfied.

The wavenumber at which the energy is
mostly dissipated is estimated (not shown) and
is fts as expected. This fact confirms the above
description about the momentum budget. They
are consistent with the energy budget described
below.

The energy balance in the quasi-steady state
is shown in Fig. 16. This four box diagram shows
that the directions of the energy transformations
are the same as those of the inviscid run. Be-
cause this diagram is depicted for the quasi-
steady state, the in-flow and the out-flow of the
each potential energ,v P and P'cancel out, and
the transformation [KiK"] : 5 X 1 0 -5 

is the same
as the energy dissipation rate of the disturbances.
From this figure, it is also seen that the energy
is supplied to R by the mean viscous force D
and is dissipated by the disturbance viscous force
Dt acting on K/. This fact confirms the state-
ment that disturbances permanently mixed the
zonal mean momentum.

4, Summary and conclusions

In the present study, we have numerically
investigated time development of unstable gravitl.
waves in a shallow water with and without

Journal of the Meteoroiogical Society of Japan Vol. 60, No. 1

12> u viscosity. The results are summarized as follows:
In the inviscid case, the disturbance which has
the structure quite similar to that of the linear
unstable wave grows exponentially at flrst. lts
growth rate is the same as that of S 1 . The
larger the amplitude became, the more significant
the nonlinear effect beca-me. Finally, the structure
of the disturbance formed a shape similar to a
shock wave, and the numerical integration was
broken down. This shock wave shape of the last
stage of the numerical run confirms the dis-
cussion of 51 about the dispersion diagram (Fig.
3(a) or 4(a)).

The momentum mixing, which was one of
the motivations of the p,resent study, was occurred
at least temporarily in the inviscid case. The
energy budget showed that only the mean kinetic

energv ,R is the origin of all other energy, and
the transformations [KK'], [Kf], and lK'P'l are
all positive.

In the viscous run, on the other hand, the
same disturbance as that in the inviscid run grew
exponentially, and reached a quasi-steady state.
In this quasi-steady state, the momentum of the
half area, MHA, was reduced by 2%. It  sug-
gests us that the unstable gravity waves can mix
the momentum permanently.

The quasi-steady state was unstable for (n-
1/2)fto mode. The unstabie modes had a fre-
quency a=0.36 and growth rate o=0.018. There
were two phase velocities of opposite signs for
each wavenumber, and the energy of each wave-
number oscillates with a frequency 2a. To ex-
plain these unstable waves and oscillations. a
linear anaiysis in which the basic state was com-
posed of two parts, the zonai flow and the ko
mode, was examined. Obtained eigenvalues and
eigenfunctions agreed with the results of the
numerical integration.

The energv balance in the quasi-steady state
showed that the viscous effect near the walls
creates the mean kinetic energy K. most part of
the created energy is transformed to the disturb-
ance kinetic energy K', and, then, dissipated by
the viscosity acting on the disturbances.

If the channel is much more longer than that
used in this paper, the most unstable wave grow-
ing in the quasi-steady state may not be (n -

1/2)ko mode but the side-band mode (n-+a)ko
where a is a real number. Indeed, by an stability
analysis for the side band modes, we find that
side band modes of +-0.4k0, -(1-0.4)fts are the
most unstable modes in the quasi-steadv state.

l :495

x  t o - '

:R 'F ]
-  0.0
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Their growth rate is seven times as large as the

sub-harmonics. But, adding to the fact that the

wavelengths are similar to those of the sub-

harmonics, the reai part of the eigenvalue is

almost the same as that of the sub-harmonics.
Thus, results of a long channel model will not

change quantitatively.

As mentioned in the previous paper 51, un-
stable gravity waves possibly play a certain role
in actual geophysical fluids, because Fr is able
to exceed unity easiiy for internal waves in

stratified fluids. Aithough wave energy is con-

centrated near the walls in a channel modei,

Blumen, Drazin, and Billings (1975) and Sato-
mura (1981b) showed that gravity waves can
grow without wails and radiate to infinity. In

many cases, growth rates of the present instability

may be smailer than those of barotropic or baro-

clinic instability, but the present mechanism has

a point of advantage that a zonal flow becomes
unstable with no inflection point of the flow,
no rotation of planets, and no temperature
variation of the basic field. Thus, if an excitation
of disturbances is found by observations in a
barotropicaily and baroclinically stable area, the
present mechanism will be a strong candidate for
the excitation.

Present mechanism is also one of the candi-
dates for mechanisms to excite gravity waves
whose wavelength is hundreds of kilometers and
which are observed in the middle atmosphere
(see e.9,., Heath et al., 1.974, or Muller, 1974),
for gravity waves excited by the present mecha-
nism have long wavelenglhs of the order of the
width of the zonal shear flow. To discuss it in
detail, however, it is necessary to solve a problem
of vertical propagation of excited waves. It is
left for later studies.
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Appendix A: Finite difference scheme

We will present finite difference scheme, which

was developed by Arakawa & Lamb (1981). At

flrst. equations (2.3) and (2.4) are transformed

to following forms:
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(4.1)

Ah Au a0
- I - I - : t l

0t o& oy

where (1, D:(hu,ha) is the mass f lux, O'
h/ Frz, K: (*'t az)/ 2, and viscous terms are

dropped fo r  s imp l ic i t y .

Then, required f,nite-difference scheme which

conserves total mass, energy, and potential

enstrophy is given by

a ^
=  -  U i , ,  j + t 1 z -  t x i '  j + 1 / ' z a i + l / 2 ,  i + r

- , ) r .  j - t , 2 0 '  I  / 2 '  j  r ) - T  i ,  j + t , 2 t ) t - t  t z .  j

- d i .  i 4 1 p t i 4 1 1 z ,  i * e t a t 7 z ,  i + t p i l i a r ,  i a 1 , 2

- . i . � 1 / 2 ,  i + 1 / 2 i t i - 1 ,  i + r n * 7 f  d

x l(K I A)i,* r tz, i + t p - (K * @)i- r tz, i * t nf:O,

(4.2)

a
U; 

! i+ t  12,  1 *  7 t+r ,  j  +r  /2 i t i+ 1 '  j  + L /2

!  d i ,  111ptu,  i=r /2+ ot i ,  j ' �1 /2r t i ,  i - \ /2

i  F i * t ,  i - t n i t t * 1 ,  j  r / 2+  9 i+ t t z ,  i ' rPA ' t + rn ,  i + t

-  g r r t  t r ,  i  - r  P i t a t  12 ,  i  - t  I  1  /  d

x l (K *  Q) i*  t  12,  i  + t  p -  (K I  @)i ,*  t  tz ,  i  -  r  pf :  0,

(A.3)

a 1
- -  h ' t * r t z ,  i + t f l - l  

T l i t t r t ,  
i + t n - f t i '  i r t t z

*A t r112 ,  j + t -O i .+ t t z ,  j l :O  ,

where d: y'r: ly is the grid intervai,

(A.4)

d t t  n

? - q i t +  
"  

1 K r @ ) : 0 ,
0 t - ? f i

d a t  d

4 - q u * i - ( K - o )  = a ,
0 t - 0 Y

^  1  , ,
i t i ,  i + t t z :  

2  
( h t + r t z ,  i + t p I  h i - 1 1 2 ,  i ' 1 p ) u t ,  i + 1 / 2 , i ,

(A.5)

^  r  , .
A i  + t  t  z ,  i  :  

r -  
(h i *  t  t " ,  i  + L f  i  h i  + r  2,  i  -  t  n)Q i  + t  tz ,  i ,

(,{.6)

t -
e i + t t z ,  j + 1 t 2 :  

2 4 L q t + 1 ,  
i + t l  q t ,  i + 1 -  q i .  i

-  q i .+t ,  i l  , (A.7)
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1

9i '+1/2, i+t/2: 24L- Qi+r, i ' t+ qi. ,  i+r

+q i ,  j -q i+ r ,  j l  ,  (A .8)

I
a i ,  i * r tz : io l2Qi+r ,  i=1*qr ,  i * r *2q t ,  i *  q i1 r ,  11 ,

, 
to'n'

F i ,  i * r t z : 24 lq i ,  i * t l 2q i - t ,  i + r+  q i - 1 ,  112q " ,  11 ,

(,{.10)
I

f  t ,  i * t t z :  
^ f 2q i ,  

i + r+  q i - 1 ,  1 *1 !2q i - t ,  i  *  q i ,  i l  ,

(A .11 )

I
6 t '  i - t , r :  

2  
t Q i - t . 1 - t * 2 Q , .  j -  j L q t . i l 2 q t - t ,  i l ,

(A.12)

1 -
7 lu t ,  

i - t t z -u i ,  i + r / 2+ ' u i+ r / 2 ,  i - 'U i - r 12 ,  1 l

1 , ,  A
1 \n i  .  r t z .  B=t  1z  !  h t - t  12 .  B ! r  /21  

d i  
q r .  B

) a 1
-7 l12 IOi+ t t  Bxrn* i t t ,  Bx tn) (Q i+r ,  n -q i '  s )

* ( f i i ,  n 4 p * i t i - 1 ,  B ! 1 / 2 ) ( q i ,  B - q i - r ,  B )

*  (A i+ t tz ,  e r t  *  0 i - t  12 ,  e r t ) (q i re r t -  q i ,  n ) j

1
\  -  t ' : .- l  

2 l ( u t t t t z .  
B l t t  [ t t 1 t ,  e - _ t t z L i t j .  z l t : )

x  ( q i r r ,  B x t  -  
e i ,  n )  *  ( 1 t t a t  1 2 ,  a  y r  I  r t i a t ,  z 4  7 z

- itr., Btn)(qtn,, r,, - q,, r)] l (A.15)
I

where B: bl and b2 for the plus sign and the
minus sign, respectively. This scheme (A.15) rs
used to calculate ei,61 and 7i,az in the inviscid
case.

The scheme (A.15) is stable in a sense that
square quantities such as the potential enstrophy
and energy are finite and conserved. A little
calculation shows, however, that (A.15) can be
transformed as

1  "  ' 6 q ' ' B
7 

\nt t  t tz .  B=t  tz- l  l l t ,  1 /2,  B-r /2)  
a-

0  |  , ,:  -Qi ,  a 
*  , (h i ,+r tz,  

nxrni_hi- r tz> Bxrf t )
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lG(q, i t ,  A) , (4.16)

where G is a function of q, fi, and 0. If
a

| ( h i a t l z ,  Ba tp *h i - t 12 ,  n : r n )10  ,  (A .17 )
OT

(,4.16) seems unstable. In the inviscid case of

this paper, there is no problem because q:- l
initially everywhere in the domain and, thus,
the right-hand side of (A.15) is always zero
within the truncation and round-off errors.

On the other hand, however, q will vary
physically with time in the viscous case, and the
right-hand side of (A.15) is no longer zero due
to the viscosity. Because (A.15) has the ambiguity
in the stabiiity property as seen in (.4..16) and
because it is hard to find out an appropriate
definition of the viscous terms which should be
added to the right-hand side of (A.15), we define

Q;61 and Qt.tz aS

_  ( u t , e t t 1 z - L t r , s a z p ] _ ' l ) i + 1 / 2 , 8 l t  - ' l ) i - t n , e x t ) f d
q t . b  

-
1 "u  (h t * r n ,n t t p *h t - t t z ,Bx tn ) / 2

(4.18)
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q i ,  i : 1 |  (h t * r tz ,  j+ rp*  h t - t12 ,  ia r12  
- l

4  |  I  h i - r tz ,  i - rn th* rn ,  i tn ) )
( A . 1 3 )

K i+ t /2 ,  i+1 /2 : !  '  
! fu ' * r ,  i+ rp lu2 t ,  ia112

' f  u 2 1 1 t 7 z ,  i + t l ' u 2 ' t + t 1 2 ,  i )  . (,A..14)

In order to prove the conservation char-
acteristics of this scheme, an attention should
be given to grid points near the boundaries. To
suffice the requirements of the conservation of
totai mass and total energy, it is adequate to set
o-points at the rigid walls as shown Fig. A1, and
a:0 at the walls. On the other hand, it is easy
to derive that following forms for qi,61 and qi,62,
which are potential vorticity on the walls, satisfy
the conservation law of potential enstrophy:

o q

. h

-  ( l i  x  V) i ,n1r
Q t . B :  .  ( A . 1 9 )

\h ) i ,n= , .12

model. Instead of (A.15), we use above scheme in theFig. A1
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viscous run.

T. Satomura a / 1

Although scheme (A.18) destroys the con-

servation law of the total potential enstrophy,

the effect of the destruction on numerical soiu-

tions is found to be small not only in the inviscid

case but aiso in the viscous case. Thus, we

regard numericai solutions as physical solutions.

Appendix B: Energy equations

Because energy equations are rather strange

form, we present detaiied derivation of them.

The total kinetic energy is
1  f t / 2

I(:+ \ Ei'+a5dy
z  J - 1 / 2
<  F l / t

:+  I  {h lur+rr )+2(h 'u ' i l+h ' ! 'a) }dyz  ) , r / z
1  e 1 / ,

+;  \  (h+h' ) (u 'z+a'2)dy.  (8.1)
L  ) _ t / 2

The mean kinetic energy K and the disturb-
ance energy I( are defined by

I  a | / e|  | " -
,K:;  \  {h( i t ,  +u,)+2(h'u 'aah'a'D)}dy,

L  ) - l / 2

(B.2)

1  l t / z  _
K':+\ @in'11u'a11a1a, . (B.3)

Z  )  - 1 / 2

Instead of the zonal average, we can use a

weighted mean velocity / defned as

V : :'  
h '

and a deviation from it,

I ' : I / - 7 ,

to construct energy equations (ex. Eliassen and
Kleinschmidt, 1951). The energy equations ex-

pressed by fr and V have two advantages: Ko is
implicitly included in the 'mean' energy, and
transformation terms are little simpler. Those
equations are, however, essentially equivalent to
the present equations, and the strange trans-
formation (B.17) does not disappeared even in
those equations. Moreover, the importance of
K" would be overlooked. Thus, we use the
ordinarv zonal average.

The totai available potential energy is

1  1  f I / 2  /  f 1 / 2  \ 2
P :  : , . + \  ( h - \  h a y )  a y

r r -  z  ) _ r / 2  \  J _ r / 2  /

1  |  g t r z  ' ,
- .+ |  (h-r) ' �dy. (B.4)
r r -  z  ) _ 1 / 2

The mean avaiiable potential energy F and

the disturbance potential energy P' are defined
by

_  1  1 f r / 2
P:  - . ; \  \n - t )zay ,  (8 .6 )

r r -  L  J  - t / 2

|  1  f r / z  _
P' : : ; .+ \  h ' 'dy .  (8 .6 )

t r "  Z  ) _ 1 / 2

As a preparation of derivation of energy
equations, we derive the equations of time change
of momentum. Zonal average of (2.3) atd (2.4)

a -  a -  /  ,  t \
^  V + D * - v t ( u ' ^  L u '  .  l v '
d t  oy  \  dn  0y /

I  _  1 -
*  * v h :  ^  F ,

f  r '  Iae

d k  a . _  a - ^
*  i - h D i - "  h  t 1  : v  '
0t  0y oy

Subtracting (8.7) and (B.8) from (2.3) and (2.4)
respectively, we obtain

Y*(  , '  L*  u '  !  \ r ' * (  o  !+ , ' ! \v '
o t  \  d f  d y /  \  o J  d Y /

- r'Y - ( o ! -tl-\v' - ),r t'
0y  \  d t r  oy /  f r "

I:  
o.o ' ,

9!* !o,r ,+-hu,+h,r j )
0 t  0n

n -

a -(htu/ -l ha' + h'u - h'a'):O . (8.10)
0y

Multiplying (B.7) and (B.8) by h and / respec-
tively, and adding the results, we obtain

a  _  a  _ _
:hv+ ^- lhYD+ hv 'u ' )  .
0t oy

:v'r *trt-rT-#tr* E.
(B.1 i )

This is the equation of zonaily averaged momen-
tum.

Subtracting (8.11) from the equation of total
momentum, which is written as

a a d
;  hv+;- (huV)*  .  (haV)
ot of i  oy

h h
+; ,vh:+F,  (B.12)

.F r" Ile

and averaging zonally, we obtain

; , _  a  _
; . h'V' I -yh'Yt u' + h'Y'a + Vh' a')
d t  d y '

(8.7)

(8.8)

(B.e)
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9  * ,  :  - [ K " K '  ] + [ K . K " ] - I K P ' l -  D , .
(Jt

(8.23)

where

[K"K,]: -\"-, ' , ,rwr, {ay. (8.24)

f  I / 2  (  . .  ^ v
[K .Ko] :  -J  

, , ^  \h 'a 'v . : -
- )

_ tY .V ' t ; (hv , ) ldy ,
)

^ _  |: - v' r '1hv' 1- V +Td - +.h'fn'
oY fr '

1 -
I  ^  h 'F ' .  (B .13 )

A e

This is the equation of averaged disturbance
momentum.

T h e n ,  m u l t i p l y i n g  r B . 7 )  a n d  ( B . t t t  a y  h V ' Z

andV/Z respectively, mult iplying (B.7) and (B.13)

by ilT and V respectively, adding the resulis,
and integrating with :r, we obtain the equation
of the mean kinetic energy as

a -
- K: - IKK' � ] - [KP]-[KP' � ] -D, (B.14)
dt

where the transformation terms tff'], Ifpl, anO
f<P'l are defined as

IKK' l :  -1" '  o i -T ' . lv  a,
) . t t z  o Y  

-

f 1  r ,  
- /, ^ ;

+ I  iT '  . (  u '  l -  +u '  I  \v 'av .
) - t r z  \  d ? '  d Y /

(8 .15 )

[KP] :  - ;  I  h- (hD+h'u ' )dy,  (8.16)
r r ' ) - t t z  0 y

I (t/z , aflD .
U ( P ' l : - l  h ' " ' . " d y .  8 . 1 7 )

l r ' . 1 - s / z  d y

_  I  l r / 2
D :  -  \  ( n V f - t ' V ' . F + h ' F ' . V t d y .

K e  ) - L n

(B18)

Meanings of transformations will be explained
later.

Since the last term of the integrand of (B.2)
plays an important role as shown in 51, we

divide the mean kinetic energy K into two parts:

K : K " + K O ,

where

1 ( r /z
K.:+ \ h@z +o'1dv

L  J - r / z

expresses the mean kinetic energy
only the zonal averaged quantities,

f  1 / 2
Ko: \  (h 'u 'a+h'a 'D)dy

J - t / 2

l t / 2  t  a VlK,K' l :  -J_, 
, luT" 7;

- /  i ,  6  r- h ' v ' . \ , r '  
a * - a ' -  ) v ' ] a t : .  

( 8 . 2 6 )

D. : *  
\ " , , ,1 , '  

FO, , (8.27)

1  i r / 2
D, :+ \  rTF?.F+T 'F . t t )dy ,  (8 .28)

r \ e  )  . 1  / 2

The time rate of change of the disturbance
kinetic energy K' is obtained by subtracting
(B.14) from the equation of the totai kinetic
energy, and is written as

(B.25)

(8.2e)

(8.30)

(8.3 i )

(8.32)

(B.33)

4 x '  : l ix ' l - lK 'P 'J_�D'  .
cJt

where

1 f t / z  _
lK 'P ' l : ; " \  hv"vh 'dy ,

t r "  - l _ t / z

1  l ) / 2  _
D':  ^  \  hV'  .F 'dy ,

r a e  ) - L / z

are written as

i

at P:lKPl ,

A _

;P' :LK' �P' � l+IKP' � ] ,

The rate of time change of F and P' are
obtained from (B.8) and (B.10) respectively, and

(B.1e)

(8.20)

arising from
and

(B.21)

is interpreted as the additional part of the mean
kinetic energy due to the disturbance surface
displacement. Then, equation (8.14) is divided
as follows:

a
- K.: -lK,K')-LK,K.I-[KP]- D, .
dt

(8.21)

The transformation [KrK'] represents a con-

version from the mean kinetic energy K into
the disturbance kinetic energy K' and is a sum
of the conversion by the Reynolds stress and
the higher order correlatioa. The transformation

It<pl, tf pl, and [KP'] are the elements of total

[KP] transformation which manifests the work
of the flow to raise the surface against the
gravity.

The [K,Ko] transformation represents the in-
ner conversion between the constituents K" and
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Ko of the mean kinetic energy K-. Transforma-

tions [K"K'] and [KoKf are the elements of the

IKK'|. D, D', D., and Do represents the dissi-

pation rates of the kinetic energy K. K' K,, and

Ko, respectively.

Appendix C: Derivation of viscous terms

In cases of viscous fluids with a free surface

as a shallow water, we must include effects of

the free surface into stress tensor of a viscous

term. It comes from both facts that a volume

eiement on the free surface feels no stress from

the out side of the fluid and that we treat the

fluid only as a set of columns. We will take such

effects on stress tensor into account.

In general cases, stress tensor is written as

/ 1 \
P , i :  -Pdt i -1211(e i1 -  "end i1  l ,  (C .1)

\ J /

where dl1 is the Kronecker's delta and is defined

AS

h

, f  ,

Fig. C1 Schematic ."p..."nfutlo.t of viscous force.
At r1:a, depth is h(a) and stress is 2err('c).
At xt:6:o:rAr, depth is f t(b) and stress is
2en(b,

|  /  Au*  Au" \
€ m n : - : \  .  f  ; - J

Z \ O f i n  o f i m /

(c.3)

is the rate of strain tensor. In this appendix,
we use subscripts i ,  j : t ,  2, and 3 to indicate
the r, y, and z components respectively, for
s imp l i f y ing  tensor  express ion .

The equation of momentum is written as

,  r i f  f f  f f
-  \ \ \  p u d V : \ \  P i ; n , d S - \ \  p u t u l n l d S
o r  ) ) ) v  J J s  J J s

. l lL pKidv,
where I/ is a volume enclosed by a surface S,
ni is a l-th component of the normal vector of
S, and K; is a body force.

Since, in case of a shallow water, hydrostatic
balance is assumed, and both u1 ard u2 ar:
independent of tr3, we can integrate (C.4) for a
fixed column which has a cross section S" and
a per iphery  C to  ob ta in .

o f l f f
-  \ f  h u n d S " : Q  P ^ " d s - $  h u * u , d s .
o t ) ) s c  J c  J c

(c.5)

"  f l  f o r  i : i
, r ; : \ 0  

f o r  i + i ,

7 is the first coefrcient of the viscosity, and

(c.7)

and m, n:1,2. We used the facts that ely n

the right-hand side of (C.1) becomes zero from

the equation of continuity (2.4) and that there

is no momentum flux through the bottom or the

surface of the shallow water.
Then, transformation from the integral equa-

tion (C.5) to a differential equation gives the

required equation as

6  a  ( q h 2 _  . / 6 u *  o r u n \ )
^  h u * :  ^  i " - - o r n + r i l {  r  - l  l }
Ot d tn  \  z  \  o fn  o l In /  )

4 . ,
-  ^  \ l lumun) .

0fin

Thus, the 11 and :r2 cofilponent of the viscosity

term of (C.8) are the right-hand sides of (3.6)

and (3.7), respectively. Of course, (3.6) and
(3.7) are reduced to the ordinary Laplacian

forms if h is a constant.
Now, it is easy to derive them physically. We

will confine ollrselves to considering only one

direction of the stress tensor for simplicity (see

Fig. C1). The momentum flux by stress per unit
area is 2a11. Thus, the total momentum flux
through the left-hand side of the column at
!x1:a is 2e11,1h61, and the f lux through the
right-hand side is 2e161h161. Because the force
which acts the column. is the divergence of the

momentum flux. the viscous term should have
the form as

F<"=o>: i im
lx-0

|  /  Aut 6rzi \
P ; i : - t  - . +  -  |

2 \y Ar1 or, /

(c.2)

(c.4)

(c.6)

(c.8)

where P-, is defined as

1
P * n :  - ; g h 2 6 * , * 2 v h e ^ n ,

z -

where r is the coefficient of kinetic viscositv.
h<o*,1"> .2enco+7ry *  h@1 .2enco>
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If we extend above discussion to all directions,
we will get the same terms as (3.6) and (3.7).
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