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Abstract

The stabiiity of parallel shear flows of a shallow fluid is investigated by linear analysis.
Following Biumen (1970), a necessary condition for instability and the Howard semi-circie
theorem are rederived for a shallow water, and energy equations are aiso derived. Then we
examine the stabiiity of two types of basic flows: plane Couette flow bounded in both sides
(case I), and the same flow but unbounded in one side to connect with a rest fluid (case II).

By obtaining soiutions expressed as power series, eigenvaiues and eigenfunctions are
determined to high accuracy, In the case I, it is shown that normal modes of gravity waves
in a channel are modified by the basic shear flow to become unstable in some discrete
ranges of the wavenumber, if Froude number, Fr, is greater than 2. In the case II, it
is shown that two types of unstable waves are found for Fr)1: One is similar to the
unstable waves in the case I but modified by the presence of the rest fluid. The wave
is trapped near the boundary. The other is a wave destabilized by the shear too, but
radiates its energy to the unbounded rest fluid. The unstable'regions of the waves of this
type are continuous in wave number space. The structure of all unstable waves found in
this paper are similar to that of gravity waves.

It is shown that the unstable waves extract their energy not from the "ordinary" mean
kinetic energy, but from an additional term of the mean kinetic energy arising from the
correlation between perturbation zonal velocity and perturbation depth, and thus reduce the
"depth-weighted" mean kinetic energy. Variation of the basic flow with time and some
possibilities of redistribution of momentum by these unstable gravity waves are discussed.

Relation between our results and Blumen et aI. (1975) is also commented.

1. Introduction

The purpose of this investigation is to examine
the effect of horizontal divergence upon the
stability of a parallel shear flow and to present
a possible mechanism of excitation of gravity
waves.

To investigate the effect of the divergence
upon the barotropic instability, Lipps (1963)
used a quasi-geostrophic flow with a jet (U:
sechzy) profile in a two-layered incompressible
fluid. He obtained complex eigenvalues by
anaiytical extension from an exaet neutral solu-
tion, and found that both the p-effect and the
divergence effect stabilize the flow. Philander
(i976) studied a model similar to Lipps. His
result was that both the B-effect and the diver-
gence effect stabilize westerly jets, but both
these effects destabilize easterly jets. Blumen
(1970) discussed the stability of a compressible

shear flow of a non-rotating fluid having a hyper-
bolic tangent proflle, and also found reduction
of growth rate by the divergence effect for Mach
number M<1. LIe also derived a necessary con-
dition for instability: M (or Froude number
Fr)>I, or U/U"10 in some region of f luid.
The former condition relates with the effect of
strong divergence and the latter condition relates
with the existence of an inflection point (baro-
tropic instability). Since he discussed only un-
stable waves for M{1, Blumen, Drazin and
Billings (1975) extended the analysis to unstable
waves for M>l in the same basic flow as Blumen
(1970). An interesting finding of their work is
that there exists another type of unstable waves
which are thought to be acoustic waves generated
in the shear zone and radiate outward. They
called this type of unstable waves as second
mode. Although they obtained such unstable
waves for M>1, and showed that they have non-
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zeto phase speed, they did not discuss the
energetics or structure ot the waves at all so that

the nature of the waves remain unclear. Further,

the coexistence of the inflection point instability

makes the physical interpretation difficult.

Whether the second unstable mode is linked with

the point of inflection or not was not explored.

One of the motivations of the present paper is
to examine unstable travelling waves (gravity

waves in a shallow water or acoustic waves in a
con.rpressible fluid) occuring in shear flow more
comprehensively and to make their characteristics
ciear.

A number of studies on mechanisms of ex-
citation of gravity waves by a hlrrizontal shear,
which is another motivation of this paper, were
performed in context of the rain hand formation
in hurricanes. Among theoretical studies, Kuri-
hara (197 6) made a linear stability analysis
using an approximation that both Z (azimuthal
velocity) and dV/dr of the basic state are con-
stants. Although he found unstable out-going
gravity waves, his model may be too much
simplified to reach a definite conclusion of this
instabi l i ty problem. Wil loughby (1977, 1978)
treated a similar problem considering the varia-
tion of basic flow more strictly, and founcl that
neutral forced waves grow spatially in outward
propagation but their growth rates (spatial
amplification rates) are not large enough to com-
pensate geometrical spreading of cyl indrical co-
ordinates. Recently Broadbent and Moore (1979)

studied the eigenvalue problem for a vortex in
a homoentropic and compressible fluid for a wide
range of M in the context of the noise generation
from supersonic flows, and they found that
acoustic waves which propagate to infinity are
weakly unstable. Their model is similar to ours
expect for the coordinates. But they did not
discuss structure or energetics sufficiently.

These studies cited above suggest that hori-
zontal shear flow may be unstable even if there
is no inflection point, and that gravity waves mav
be excited. In connection with excitation of
gravity waves, Blumen (197i) investigated the
characteristics of disturbances in a two-dimen-
sional ly varying basic f low U:(a*z)tanhy. He
discussed unstable modes, but his discussion was
confined to solutions which are valid onlv for
Fr<1. Thus, the unstable modes which he found
are essentially barotropic instability.

It is rational to consider that unstable modes.
related not with the point of inflection but with
strong divergence, should be sought and their
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structures and energetics should be discussed in
more detail. In this paper, two cases will be
examined: case I is a Couette flow between two
parallel walls, ard case II is a Couette flow
bounded only on one side and joined to a semi-
inflnite rest fluid. We consider oniy inviscid
fluid. Froude number is greater than I for the
both cases because these flows are stable for
Fr(l as shown in later section. Case I is treated
for the purpose of finding a new unstable mode
which has no relation with barotropic instability.
In the non-divergence limit (Fr-+0), Case (1960)
showed that the perturbation equation for plane
Couette flow has no normal modes (discrete-
spectrum solutions) but only has continuous-
spectrum solutions, which are "weak" solutions
having a singularity at a critical point. He also
showed that the basic flow is stabie even if such
a continuous solutions are used for expressing
initial disturbances. Thus, if there exists an
unstable discrete-spectrum solut ion in case I,  l t
can not be connected with barotropic instabiiity
at all. but it should owe its existence to diver-
gence (gravity wave). In fact, such unstable
modes exist as will be shown in later section. On
the other hand, case II is treated to examrne
radiative characteristics of the unstable gravity
waves. We will find unstable out-going gravity
waves and unstable trapped waves in the case II.

The present u,ork has some interesting tech-
nicalities. Complex eigenvalues will be calcu-
lated down to ten decimal places by utilizing
analytical solutions expressed by power senes.
The method used to obtain eigenvalues and
eigenfunctions enables us to save computer re-
sources and to evaluate them with anv accuracy
easiiy. The method is superior in that we never
miss eigenvalues while we are lree from the
tedious work of omitting computational modes
which are often mixed with the true eigenvalues
if we use a finite difference method.

2. Basic equations

We shall  consider th: stabi l i ty of a plane
parai lel f low, U*(y*), of a shal low water where
the basic flow U" is in the r* direction, and
varies in the transverse direction, y*. An in-
finitesimal disturbance having the velocity (il*,
'u*) in the (n*, y") directions and a surface dis-
placement ftx is superposed on this basic state.

It is convenient to non-dimensionalize the
quantities by introducing a velocity scaie U6,
and a length scale I, both of which are straight-
forwardly derived from the basic flow, and a
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depth scale 11 which is the basic depth oi the
fluid. The dimensionless coordinatcs, time, veloc-
it1,, and surface displacement are written as

( . n , y ) - ( r + ,  y * ' ) / '  L ,  t : t * L r o i L ,

U : U * / U o  ,  ( u , u ) : ( u * , u x ) 1 L ,  o

h -_ h*,/  H (2. 1)

The perturbation equations for disturbances u-r
an inviscid shallow water (rvithout Coriolis force)
then become

6 u  - . 6 u  d U  |  6 h
- : ,  _  J  _ _ : t l

o t ' "  d r  
" d y  

F , - 6 r

A u  , , 6 u  |  6 h
_  _  I  : t ,

o I  o " t  f r '  o J

Ah 6h  6u  ou
-  L [ '  : - : o
A t  

" 6 r  
o t  d y

where Fr:tlo/ ^,/ SH is the Froude number, g
is the gravity acceleration. Equations (2.2) and
(2.3) are the momentum equations, and (2.4) is
the mass conservation equation.

We assume a form

q  :  4 (  y  )exp  [ ( i k (  x  -  C  r  t ] , ( 2 .  5 )

for each component q ol the perturbation
quantities, where ,t is a real wave number and
C:C,i iCi is the complex phase velocity. The
complex eigenvalue C is determined under the
condition that perturbation quantities satisfy the
l inear equations (2.2), (2.3) and (2.4) and ap-
propriate boundary conditions.

Upon writing u, u, and ft in the form as (2.5),

we eliminate fi and 0 to obtain a sinsle equation

IOr /r as

(u  -C )h "  -2u 'h '  \  k , (U  -C )
, .  i' f F , ' ( U  C ) ' � '  l l h : 0 ( 2 . 6 )

where prime denotes differentiation with respect
to .v. Equation (2.6) becomes identical with (7)
in Blumen (1970) for a perturbation in compres-
sible fluid with shear when Fr is replaced by
Mach number M as he pointed out.

The boundary condition at a rigid wall is
wrrtten as

-  i , ( 2 . 7 )

When the fluid is unbounded. we assume that
U approaches a constant value outside the shear
zone. Then from (2.6) we have the asymptotic
form of a solution as

i .f t  -exP[  - :  k  U -  F t2 lU -  C)2 ] ' "y  I

a s  l y i - - .  ( 2 . 8 )

If a rest fluid extends in the outside the shear
zone as in the case II ,  the solut ion of (2.6) in
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( )  ) \

( 2 . 3 )

( 2 . 4 )

the region of the rest f luid is

[ :exp l  +  / r  {1  -  F , ]C ' ] , / , yJ  . (2 .8 ' � )

We do not confine ourselves to 'subsonic' disturb-
ances, that is, dimensional phase speed C,x can
be greater than the velocit;r of thc gravity waves
^/ llH, so that Fr2C,2 can be greater than 1. Thus,
the radicant in the r ight-hand side of (2.8) or
(2.8') can be either posit ive or negative, and
accordingly, the solution is exponential or sinu-
soidal. We select a solution which decays away
from the shear zone or a solution which expresses
a wave radiat ing from the shear zone'r ' .  Such
solution is appropriate to be used as a boundary
condition for a solution in the shear zonc.

3. Characteristics of the basic equation

Before obtaining solutions of (2.6) for specific
flows, we shall discuss some properties of solu-
t ions of (2.6).

3.1 The Howard semi-circle theorem
Since (2.6) is the same form as (7) in Blumen

(1970), the Howard.semi-circle theorem (Howard,
1961) can hold, as Blumen (1970) has shown.
Dividing (2.6) by (U*C)3: mult iplying by hx, the
complex conjugate of /r, and then integrating,
we have the following relation from the real
part of the result,

^  l b  a p - L l - . r l  i r .  .
U - l  :  d y : \  k t F . : h t d y- ) "  t U - C , 4  o d

I  l '  -  L  - , ,  - L  o ' n  \ r :  r :- l _ 1 | L . - -

t \ -  )  ) ' ' '
l U ^ ^ ' - { r ' . , "  i t , i '  Q d y ' .  ' \
\  r  /  i l  \ J ' ' J

'  t  ) a  l u  
- L  

)

where boundaries are at y:a and y:D; a and b
may be infinite. U*"* and U,,in denote the
maximum and minimum values of U, respectively,
and

q : p z i f i i z ' ,  i ' ) " r } .  ( 3 . 2 )
, o - .  i  " -  ^Since kzFrz  l , ' 2  >0 .  (3 .1 )  imp l ies

I  c - -  U ^ " * t U ^ i n  \ 2  n . , l U ^ u ' - U - i " \ :
\ t t -  z  l  f  ( " ' - : = \  

I  / '

( 3 .  3 )
This is the theorem stating that if there is a
growing disturbance as eigensolution its eigen-
vaiue C"*iC should lie in a semi-circle on the
compiex plane, given by (3.3). This theorem is
lmportant not only from theoretical viewpoint

'F In the case where C has an
latter condition becomes the
one.

imaginary part, this
same as the former
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where

,=Y-!* , ' r  '
0!r oy

The per tu rba t ion  energy  eq t ta t ion  is

AS

a l , ' l /  h 2  \ ,
. - \  \ + {  L t z t  t t  -  l d t c l Yo t  J ) t  \  f r - ,

r : f
:  -  1 \uuL l , d rdy  .
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but in a practical procedure of searching for C

in the complex plane. Thus we wil l  use (3'3)

to restrict the complex C plane in which we must

search to find complex eigenvalues'

3.2 Necessar,t condition t'or instability

We derive a necessary condition for instability

fol lowing Blumen (1970). The equation for the

potential vorticity c,., is derived from (2.2)-(2.4)

as

a bas ic  f low is  s tab le  i f  (3 .10)  o r  (3 .10 ' )  ho ld
at least in one o[ the coordinate s1'stems which
are moving in the r-direct ion. Note that such
a consideration leads to the stronger necessary
condition for instability (Fjgrtoft, 1950) concern-
ing the barotropic instabilitv.

3.3 Energetics
For discussing the energetics of the flow,

dimensional form is convenient. The total veloc-

ity (.ur, oi) and the total depth /z+ can be ex-

panded in power series of a small  parameter .
(to the second order) as

Y l - I J  a e u l e 2 u ( 2 )  ,
y l : 6 . y l e 2 u ( 2 >  ,  ( 3 .  1 1 )

h i + H + r h + r ' H ' " ,

where all variables have dimensions and e is a

smail parameter proportionai to perturbatlon

amplitude. U is the basic flow, I/ is the basic

depth (constant), u, a, and ft are the f,rst order

perturbations, and tJe), Ve), and I1(2) express

variations of the zonal mean quantities at the

second order. So far as we are concerned with

the energetics, we do not lose validity by con-

sidering only the zonal mean parts of the second

order variables u(2), v(2), H(2).
'Loca1' kinetic energy, E1, ma! be expanded as

1
pr : : (H, l  eh  + . rH(2) ) l (U  +  €u l  22 fJ {z>

1,

* (eu I :2V r 'z>121

_ l  u r , " * ,  t 2 H U u * h ( J 2 ) +  ; 7 A U U , " ,) " "  2 ' '

+ H (2) (J2 + 2huU * H(u2 l  "- ' ) ]  + O(e3) .

By taking the zonal mean ol the above expres-

sron, we have

1 : 2
P:= H U:  + ^  l2H lJ  {J  ' )  - r  H 2\Lz

z ,

+ 2hutJ - HIT - X)l
I  i  a  - r )

: ) -  HrJz +, , . ]8 ,+(  E, -+r ,  )  f  .  (3 .  12)
-  (  \  -  / t

where a bar denotes averaging in the :u-direction,

and

1 -
E , - L g < z > 9 2 + H L l u ( ! ) - t h u U ,  ( 3 . 1 3 a )

I  -  f r -
E o :  ^  H 1 u :  -  u ' � ) r  i  h :  .

z / .
(3 .  13b )

The first term of the right-hand side of (3.12)

is the basic kinetic energy, and Eo is the totai

energy of the perturbation per unit area. As

( 3 . 4 )

(3 .  s )

also obtained

( 3 . 6 )

Now (3.4) is mult ipl ied by aU/U" and inte-

grated over the whole domain to yield
'  f fo  l l  u  o '

;  \  \  , 1 , t ;  d  t d Y :  \ \ a u U  d  x d Y  '  ( 3  ' 7 \
t J t  J J L  -  J . l

Upon rewriting ro on the right-hand side of
(3.7) by using (3.5) we integrate by parts to

obtain

f r  f l r  l l  , " :  '  f f
+ \ \ (  ; ' " - '  u h , \ a r a v  : \ \ u u U ' d r d v
d t S 1 t g "  2  '  J J

( 3 . 8 )

Addit ion of (3.6) and (3.8) gives

A  t t  1  t  u  I-  \ \  ^  J  ) l -  , , , :  s  _ ; t h t  F r t U t t ) : + t ' :
A t  \ \ 2 l t J " *  r r -

I
l \ 7 - F , : U 2 ) u ' � l d r d Y : 9 .  ( 3 . 9 )

)
This implics that thc basic flow is stable if the
following relations hold in the whole domain.

1 - F , 2 ( J 2 > o  a n d  * r o .  ( 3 . 1 0 )
U

In the dimensional form, (3.10) is

JsH>tUl  and * ro .  (3 .10 ' ),  
I J . .

Inequali t ies (3.10) or (3.10') are the same as
Blumen (1970)'s i f  Fr is replaced by M.

If we choose a coordinate system moving in
the r-direct ion, the inequali t ies (3.10) and (3.10')

may change. But the physical properties must
not change. From this consideration we see that
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aH,2 '  6hu  6hu  AV  2
-  *  - ' *  - ^  * H  -  : 0 .  1 3 .  i 9 )
ot oI  .dy oy

Mult ip ly ing (3.14) ,  (3.15)  and (3.16)  by Hu,  Hu
and gHh respectively, adding the results, and
integrating over the whole domain, we obtain

#\u'or: -\'nfi^, ,
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(3.23a)

A f  c  
- ; ;  

) , 1
*  \Eu rdy :  - \ (  nUu- i  -  1 , , r 9 \ \ dv  .u t  J  J '  a y  d y ,  '

(3.23b)
The flrst and the second integrals in the right-
hand side of (3.23a) express the rate of the energy
conversions to Epp and Ep, respectively.

(3. 16) I t  is worth noting that, even i f  ,ordinary, 
zonal

mean kinetic energy Es does not change, pertur_
bation energy can grow at the expense of the

- additionai energy term E6p, which mav become
(3'17) 

negative. In fact, the l inear shear f low, that we
consider in detail in the next section, falls in this

( 3 .  1 8  ) lnterestlng case.

3.4 Characteristics of solutions near the singular
point

Equation (2.6) has a singular poiht at ):l,c
where U(y"): C. To examine the characteristrcs
of a solution near the singuiar point, fi and (l
are expanded as follows

shown soon later,,E" is the kinetic energy of displacement. Then, equatron (3.21) is divided
Cepth weighted zonal mean flow contained in a as follows:
co lumn wi rh  un i t  a rea .  We r rc  in te res ted  in  the  i  r
cnergy  convers ion  be tween t "  and r r .  o r .  in  u  * [u " r r : i ( ru r?-nru* \a ,
spec ia l  case.  among the  te rms in  the  r igh t -hand 

u t  J  J '  oy  dy  '  '

side or  (3.13a) .
Now, the first-order perturbation equations

A u  . . 6 u  d U  A h
E - u  a * - '  a ,  

I  s  a . r :  
1 3 ' 1 4 )

ou  __  ou  dh
u  I U  -  I  g ; - : 0 ,  ( 3 .  1 5 )
o t  d $  

- d y

1. . -du
i  l n u U - -  d \ ) .

l d v

6 h  . , 6 h  . . / A u  d u ,- ; - U  ^ - r H  I  ̂  ' - l : 0 .
o t  0 I  \  d I  o y  I

and the second-order equations are

AIJ 2' -4, 
au _. . rtu

^ - .  - L l - ^  - l ' - ; - - V  -  r  : U .
ot  ofr  dy dy

u+-,-y- ;+-n a! : :o
o t o r d y " o y

(3 .20 )

The right-hand side of (3.20) expresses the rate
of energy conversion by the Reynolds stress.
Mul t ip ly ing  (3 .14) ,  (3 .16) ,  (3 .17) ,  and (3 .19)  by
Uh, Utt, Htl , and (J2/2, respectively, integrating
over the whoie domain, and adding the results,

i r : z^V nnz ,  ,
z=  0

and

@ t n

( 1  : l  ^ - . 9 " < " >
n : 0  / l !

where z:y-I",  i  is the index which should be
determined later and U"(t) is the n-th order
derivative of U(y) at y:y". After substitution
of Q.2a) and (3.25) into (2.6), and rearrange-
ment, we obtain the following equations for a,s
by using the fact that coefficient of each power
of z should be zero;

u " ( 1 ) ) ( ) _ 3 ) c o : 0 . (3.26a)

(3 .24 )

(3 .2s)

we obtain

#\",,,-\"nfi a, (3 .2 r )
'Ihe 

right-hand side of (3.21) expresses the rate
of energy conversion by the Reynolds stress, and
it is the quantity that causes change of the per-
turbation energy as seen in (3.20). Thus, the
identification of ,E" as the (weighted) zonal mean
kinetic energy is appropriate.

Since, as shown in following sections, the last
term in the r ight-hand side of (3. i3a), huu, plays
an important role, we divide E, into two parts:

Es :En*Esp, (3.22)
where EB: H(.2)a2/2+ HUU(.2) expresses the
zonal mean kinetic energy arising from the second
order zonal mean quantities, and Eup: huu is
interpreted as additional part of the zonal mean
kinetic energy due to the perturbation surface

u, .<t t ( ) t r )Q-2)ar :  - ry  ;Q-5)ao ,

Lrce ) ( ) ,+2 ) ( ) - r )az  

(3 '  26b )

:  -1i l  )Q-7)-k 'uPlao

- u { r "  f ^ n \ ( ) - 4 ) a t ,  (  3 . 2 6 c )

u"( r ) ( . )+3\at ,

:  - lT ^t*s)-k'Y!:1)ao
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f  u " 3 ' . .  I- l  
, ,  , ^  - 1 t ( )  - 6 r - k ' U " t  

l a t
I  | "  r )

-  ] 1 ( ;  + 2 ) Q t  - 3 ) a r ,  ( 3 . 2 6 d )
/,

From (3.26ar, ;. ;.r.r;t. '"r"", ", the indices
as ,i : 3 and ,i :0. The former gives a regular
solution while adopting the latter we faii to
determine ru3 as seen from (3.26d) and we have
to seek for another independent solution by the
method of Frobenius. Thus we have generai
solution as,

f r : A h r < " > * B h z < z > ,  G . n )
where ,4 and B are constants, and lz1 and ft2 are
two independent  solut ions g iven as

h{z):zt f ,  onz' ,
n : 0

h z ( z ) : a h t ( z ) l o g z L  L  b n z n  ,
n = 0

k2u  c (2>
d -  * i , . D .  ( 3 . 3 0 )

bn are coelficients determined from the require-
ments that (3.29) satisfles (2.6); but their explicit
forms may not necessarily be written here for
the reason as explained soon later.

Although. in general.  fr  hu. a logarithmic

singulari ty at y:y" as (3.29) shows. f t  becomes
regular in the whole domain i f  U"rz>:O, as seen
from (3.30). This occurs either in the case where
the shear is linear or in the case where we
happen to have U"rzt-O for non-l inear shear.
Most of the studies so far made deal with the
latter case, because they consider only the so-
called inflection-point instability. In this paper,
however. we conflne ourselves to the linear shear
flow. because we are interested in destabilizatron
of gravity waves and therefore it is desirabie to
avoid the occurrence of an inflection-point

instabi i i ty. In this .ur.,  /r  becomes a reguiar
function.

4. Stability of linear shear flows

4.1 Notes lor the necessary condition of a linear
shear flow

When 7':0, the derivation of the condition
(3.10) or (3.10') is incorrect. But, as we wil l
show subsequently, a similar condition can be
obtained. The equation for the potential vorticity
rr.r in the linear shear case is written formaliy as

0 a  _ _  6 a
^ ,  + u ; - : 7 u d ( y - y a ) ,  ( 4 .  1 )oI ox,

- L ) i

where 7 is a constant and d(_v) is the delta func-
t ion. This delta function is cau,qed by a dis-
continuous change of U'(y) at y:ya (for example,

1,:0 in the case II) .

Since z, u, and h are assumed to have the form
as (2.5), equation (.1.1) is rewrit ter.t

i k ( .U  -C)a :7ud(y  -ya)  .  ( .4 .2 )

When U is a l inear function of y, (4.2) means

o : 0  ,  ( 4 . 3 )

except for ! : !a." '
Deviding (.2) by ik(U- C), mult iplyingby uU,

and integrating over the whole domain, we obtain

f f
\ \auLrd  xdy  -T /L I  aua2 (4 .  4 )
J J

where o'4 : o(ya) and ^y' : ; / ik(U 6- C) .
Equation (4.4) is the same as (3.7) except for

the left-hand side. Thus, simiiar calcuiation as

T. Satomura

( 3 . 2 8 )

(3 .2e ) before gives

* l \u o "o.  a t  :  \ \uu 
u '  a n a t

- 7'uaz(J a - l iuJuo{J a , ( 4 . 5 )

where ftfr]o6 is a jump of the Reynolds stress,
LaI ,  a t  y :yd ,

Adding (3.6) and (4.5), we havc

A  t ' ' t a  1
; - \  l - l  r h - F , : [ J u ) , - u '
a t  ) ) 2 L F ' ' -  

'  -

I- t(1 - F,2U2)u2 ldrdy
)

:  -Q 'ua2* [uu l r )Uo  .  ( 4 .6 )

When there is no discontinuity of U' as in the
case I or Ua:0 as in the case II, the right-hand
side of (4.6) is zero. In these cases, the above
equation impiies that the basic flow is stable if
an inequality

I - F r 2 U 2 > 0 ,

hoids in the whole domain. In
form, (4.7) is written as

J s H > U . (4 .7 ' � )

In the subsequent part of the present paper we
treat stability of flows of two different proflles.
Adopting the consideration in the last part of
subsection 3.2 to (4.7) we obtain a necessary
condition of instability as

Fr> t2  fo r  the  case I .

But, in the case II, that consideration cannot be

( . 4 .7 )

the dimensional

'k Thus we excluded
A(U-C), associated
obtained by Case

singular normal modes, rrr:
with continuous eigenvalues as

(1960) .
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(even) means that the respective summation is
carr ied out only for odd or even n's. The co-
efficients a's are determined as

a o : 7 ,  a r : 0 ,  a z : - k 2 , 1 2 ,  d B : 1 ,

k : l . a n - z l  F i a n - )
f o r  n ) > 4 .  ( . 4 . 1 . 3 )

n ( n - 3 )
The radius of convergence, p, of the power senes
ts examined bv use of the relation.

, .  a n - z
P - l l r n -

n + 6  Q n

(4.  14)

and turns out to be inflnity, so that (4.12) can
be applied everywhere in the domain.

Now, an eigenvalue problem is formulated as
foi lows: The boundary condit ion is (,1.10). Then,
substi tut ing (21.12) into (4.10), we obtain,

A  I  na" (  -  CL- t  +  B  l ,  na" ( -  C) " - t  -O
r =  3 ( o d d )  n : 2 ( e Y n )

(4 .  15)

A Z  n a " ( I  - C | - t * B Z  n a " ( l  - C ) " - t - 0 .
n : 3 ( o d d )  n = 2 ( e v e n )

(4. 16)

Requiring tbat A and B do not vanish, we have
a characteristic equation for C as,

l l , r - f )  1 . , , - 1 ^ \  I
f r k . F , :  C r : l ' . '  

" '  
l : 0 .  t 4 . 1 7 )'  

l / r ( t - C )  l . t t - C i l

where

l . t z t -  \ -  n n ^ z n - I (4 .  18 )
z =  3 ( o d d )

f  , (z ' l :  L  nanzn- r  ,  (4 .19)
, =  2 ( e v e n )

When ft and .Fr are given, (4.17) determines the
eigenvalue C. Thus, to obtain an eigenvalue is
equivalent to finding a zero point of the complex
function l(C). We seek eigenvalues by successive
approximation as described below.

The basic idea of search is to use a theorem
in complex function theory

adopted, because (4.7) or (4.7') is derived only
for a coordinate system which gives U,1 :0. Thus
(a.7) is writ ten as

F >1 fo r  the  case I I .

4.2 Case I:  Plane Couette f low bounded in
both sides

First we consider a plane Couette f lolv, 1.e.,
the f luid is bounded by r igid walls at ,v:0 and
y:1, and the basic f low is a l inear function of y:

f  / r ' r ' \  - . ' ( 4 . 8 a )

Then boundary conditrons are

u :  h /  : 0  a t  y :  Q  a n d  y :  I  .  ( 4 .  8 b )

This situation is schematically shown in Fig. f i.

It is convenient to transform independent
var iab le  y  in to  z :U-C:y -  C.  Then (2 .6 )  be-
comes

dri ^ di
,  *  -2 |+k)z (F ,22 ' � -1 )h :0 ,  (4 .9 )

dz"  az

and boundary condit ion (4.8b) is

d h
u :  

E : 0  
a t  z :  - C  a n d  z :  i  - C .  ( 4 .  1 0 )

To find solution of (4.9), /z is expanded into
power series ol z as

h : z )  Z  a n z "  .  ( 4 .  1 1 )
n : 0

Then from the preceding discussion (subsection
3.4) we see that both of the two roots of the
indicial equation, , l :0 and ,1.:3, are val id and
the general solut ion of (a.9) can be writ ten as

h : A Z a n z n * B Z a , z "
n  -  J l o d d  n -  0  c v e n

(4 .12 )

where ,4 and B are constants, and (odd) or

ll

' l

The model of the case I. Non-dimen-
sional width is 1 and non-dimensional
basic flow varies from 0 to 1.

' .A. l l  f isrrres in this naner are drawn in the norr
dimensional variables and ampiitudes of perturba-
tion variables are normalized by the maximum
amplitude of I for each parameter.

(4.20)

where $ dC means an integral along a closed
L

contour L on the complex plane, and N and P
are numbers of zero points and poies of the
compiex function l(C) located in the domain
enclosed by I, respectivelv. In the present case
the two independent solutions of (4.9) are regular
everywhere, so that their first derivatives 11 and

l2 are regular and hence P:0. Equation (,1.20)

is transformed into a more convenient form

N_P: *f "n,,#o'
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N : + f ,o to1- r :j;b,stt')-are(lo)1,
(4 .20 ' )

where Arg(l) is the argument of the function l,
and fo and fu are the values of I at the flxed
point on L after and before the line integration,
respectively.

We search for the eigenvalues as follows:
(a) The parameters k and Fr are specified.
(b) I' and fb are evaiuated numericaliy at a

point on a rectangular contour I which includes

the Howard semi-circle.
(c) I f  N:0, then another set of parameter

values are given. But i f  N:0 we divide the

rectangle into small sub-domains and f" and lo
are re-evaluated at a point on the contour en-

circling every sub-domain. If we find N sub-

domains which have a zero point, we repeat the

procedure dividing the domain into smaller sub-

domains until the domain in which C exists rs

so small that the iteration as described in (d)

converges easi iy (see Fig. 2(a)).
(d) Divide the small sub-domain into M

rectangies, each of which has the same area, and
evaluate the letl-hand side of (4.I7), f , using the

c,
+0.54 -----:--:-----=i, --

L ,  
' , .  

I  ( a )

Searching procedure for eigenvalues. (a)

Dividing procedure. Line integral is evalu-
ated along rectangles in the directions of
arrows and shaded rectangular includes a
zero point. (b) Iteration procedure for M:2.
At first l 's are evaluated at nine points
Cr-Ce, then re-evaluated at nine points Cq-
Crr. True eigenvalue locates at the point
which is indicated by a cross, X.

Satomura

vaiue of C's at each corner of the rectangles, c1
to Ce (see Fig. 2(b)). Then around the corner
which gave the smaliest absolute value of l, say
Cs, make new M rectangles, each of which rs
I / M of the rectangles of the first iteration, and
re-evaluate I at new nine corners Cs-Cfi. We
repeat the procedure dividing the rectangle into
M smaller rectangles and evaluating I using the
vaiues of C's at corners until the smallest absolute
value of I is smaller than a specifled value, say
10-10. The approximate eigenvalue C is what
makes l(C) the smallest value.

Using a quadruple precision program, we
obtain eigenvalues to more than ten places of
decimals for ail sets of parameter values. In
order to get the above mentroned accuracy, it
was required to calculate the power series up to
n :255 in  (4 .15)  and (4 .16)  fo r  Fr :1  and k :
10, which was the greatest n and the number of
the iterations is about 20-40.

Tn nrincinle- i t  is oossible to locate z, zero
point of I to any accuracy by repeating the
procedure (c) without using (d). There is another
way to evaluate directly the vaiue of C by an
integral

1 5 5

( 4 . l 1 )

which cai-r be applied to any (not necessariiy
small) closed contour Z encircling the zero point.
However, it turned out that both of the methods
are less convenient compared with the simplest
trial and error method described in (d). Ef-

ficiencies of the methods may depend on types

of problems and also on details of numerical
calculations.

Results of the eigenvalue calculations are
presented in Figs. 3 and 4. Figs. 3(a) and 3(b)

show the phase speeds C, and grcwth rates ftC;

for Fr:5, respectively. The meanings of the

indices (1, i) .  (1,2), etc. are explained later. Figs.
.1(a) and 4(b) are the same as Figs. 3(a) and 3(b)

respectively. except for Fr:7 .  Both Figs. 3(a)

and 4(a) are symmetric about the l ine C':0.5,
as expected from the symmetry of the model.

Inspecting Figs. 3(a) and 4(a), we notice that

the k-C, relation (dispersion relation) has parti-

cular features. The5r might be interpreted as
follows. If we assume that the basic flow is
constant, equation (4.9) has solutions of simple
gravity waves and their dispersion relation is
given as

, :*f ,#f l ,ac"

t  I  r - - c
c : u o r - 7  |  1 + ; , (4.22)
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3(a) Curves of non-dimensional
velocity for Fr:5 and case
lines are neutral modes and
lines are growth modes.
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These relat ions are shown schematical ly in Fig.
5 (a) .

At the next step, we consider distortion of the
phase speeds by the basic flow which varies with
y. For the sake of simplicitv U is assumed to
change slowly. fhen (a. i)  is approximated as

drh
r .  :  - k 2 { F t : t y  - C \ ' �  - 1 )  h  .ay '

Now, for the family of the faster phase speeds
C-tn) (>l/2), the vaiue in the bracket of (4.24)
has greater posit ive values near the wall  at y:0
than near the wall  at y:1: aird a region of
negative value of the bracket, where the soiutions
cannot be sinusoidal but becomes exponential,
appears (for Fr>2) near the wall  at v:1. Thus,
the solut ions are more wavy near y:0 than y: 1
and the area where the solutions are sinusoidal

o r 2 3 4 5 6 7 8
(a)

Fig. 4(a) Same as Fig. 3(a), except
Fr :7 .

(4 .24 )

F i o

(b )

Fig. 3(b) Curves of non-dimensionai growtL
rate for Fr:5.

where us is the velocity of the constant basic
flow and the factor nr comes from the boundary
conditions at two rigid walls. $/e may assume,
to a first approximation, that the waves are ad-
vected by the mean speed of the basic flow. Thus,
we take uo:7/2 in this case and have approxr-
mate dispersion relations for the two families as

,  (4 .23a) |  2 3 4 5 6

{b)

Same as Fig. 3(b), e.rcepr
Fr :7 .

-  I  1  I  t n - ) i
C _  " - , :  

2 t '  F ,  \ '  1 _ ; : o

Eie. a(b)

6 7 8

o  1 2 3 4 5 6 7  8

(4.23b) for
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l a l

Fig. 5(a) Dispersion relations for C 1 
( n) 3nd

C-(n). Upper dashed l ine is C":
0.5*Fr-1 and lower one is C,:
0.5 - Fr- 1.

Fig. 5(b) Dispersion relations for modified
c , rn) and c,(n).

i s  la rger  near  y :0  than y :1x .  Then we may
consider that the family of C -tnt has more energy
near y:Q than y: l  and that they are advected
not by the mean speed l,rs: L/2 but by the basic
f low at a point cioser to 1t:O, i .e.,  by a speed
u-tnt l l /2. For the famiiv of the slower ohase
speeds C- (o,.  the ef lect of the basic shear is
reversed and they may be advected by a speed

Satomura 157

11*t 'Lts7/2. Then, (4.23) mav be rewrit ten as

I  l "  t - - P
c L ( o - u - @ ) * " ,  V 1 + ' ; '  

( 1 . 2 5 a )

(uc \ [
( J .25b )6 -1n t -u * t " )  -  

j 7
I  L  (no1'
; \ J  \+  uk2

Above relations are shown schematically in Fig.

5(b). Fig. 5(b) is very similar to Figs. 3(a) or

4(a). In general, if two neutral :nodes cross in

the k-C, piane, i.e., if a degeneracy occurs, it is

expected that phase speed C becomes complex-

valued near the crossing point (see, e.9., Gustavs-

son et al. 1980), and it really occurs as shown

in Figs. 3(a) and 4(a).
From the above discussion we interpret that

eigen-solutions shown in Figs. 3 and 4 are

essentially gravity waves modified and destabilized

by the basic shear flow.

Now, the meanings of the indices (1,1), (1,3),

etc. in Figs. 3 and 4 are clear. The first index

in brackets indicates the number, ,?, of the faster

phase speed mode expressed by @.25a) and the

second index indicates that of (4.25b). The two

modes are mixed to produce this unstable mode.

Thus, for example, (1,2) means the unstable mode

whose parents are the C+irr *oda and the C-(2)

mode.
Next. we shall look into the structure of un-

stable waves. Fies. 6(a), 6(b), 6(c) and 6(d) show

amplitude of h for the (1,1), (2,2), (2,1) and (3,2)

modes for Fr:1, respectivelv. As understood

from the previous discussion, a mode (nr nz) has

zr1 maxima near y:0 and n2 maxima near ):1.
Fig. 7 shows the amplitudes of the divergence

and the vort ici ty for (1,1) mode of Fr:1. We

a

o

Fig. 6

o

Ampiitude of non-dimensional surface dis-
placement h lor Fr:1 and case I. (a) t:

2.75. Cr:0.5 and kCi:0.076 (mode (1,1)) '

(b) k:6.7, Cr:0.5 and kCi:0.033 (mode
(2,2)). (c) k:4.45, Cr:0.6 and ftCi:0.054
(mode (2,1)).  (d) f t :8.65, Cr:0.55 and
kCi:0.021 (mode (3,2)).

'r ' This supposition will be verified by the structures
of the eigensolutions as shown in Fie. 6.

::.-r.;-J.i..,
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o
Fig. 7 Amplitude of divergence (D) and

Vort ic i ty  (V) for  Fr :1,  k:2.75,  Cr:
0.7 and kCi :0.076 (mode (1, i )  in  case
D. Solid line is the vorticity and
dashed line is the divergence.

Y  .  - o
t
I  :  , :  : . . -

lzztrzzr,rzrrzlzzrrzrrz.rrzzrrrzlrl,,

Fig. 8 Structure of the unstable wave for
the same parameters as Fig. 7. Solid
lines are contours of ,4 and arrows
denote velocitv (u, t;). Contour interval
i s  0 .2 .

see that the divergence is greater than the vorticity
near the boundary, where both of them attain
maxima. This fact can be an evidence that these
unstable waves are of gravity wave origin.

Fig. 8 illustrates the structure of the unstable
wave. This structure is very simiiar to that of
gravit-y wave in a channel, especially near. the
boundaries (structure of a gravity wave is shown
in Appendix). As shown in Fig. 8, the wave
crest has a tilt; the phase at a larger y point
leads that at a small y, possibly owing to dif-
ferential advection by the basic shear flow.
Examining the relationship between h and u we
notice that the wave tends to move toward the
left side (r(0) near the y: 1 boundarv whiie
near the y:0 boundary the wave has a structure
to move to the right, if there is no basic flow.
Since the basic flow has a shear which just
opposes the above mentioned motions arising
from the wave structure, th. is structure can be
maintained. Inspecting the veiocity field closely,
we notice that a and .o are negatively correlated
in the middle part of the channel. Thus there

Journai of the lvleteorological Society of Japan Vol .  59 ,  No.  I
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is a down-gradient transport of the zonal momen-
tum and hence the disturbance gains energy from
the mean f ield as seen from (3.19). I t  is interest-
ing that this negative az correlation is a result
of the tiit of the wave as mentioned before,
because the velocity vector tends to be perpendi-
cular to an equal phase line (or it is parallel with
the wave number vector), which is a property of
gravity waves. If the disturbances were of
rotation type, the same tilt of equal phase line

wouid be accompanied by a posit ive rru and
hence the wave would decay. Thus we know
that this unstabie wave owes its existence to the
gravity wave mechanisms.

We will call these unstable waves as SG-
waves.

4.3 Case II: Plane Couette flow bounded in
one side

Next we consider a fluid wbich is bounded by
a r igid wall  at ] ; :1 but extends to l ,-+- *.  The
basic flow is

l y  0 < y < 1  ( r e g i o n  I  )  ,
u { v l : .

i0  ys10 ( reg ion  l I  )  ,  U .26)

and boundarv conditions are

u : h ' : 0  a t  ) : 1 ,

and the perturbation quantities
n r  r o r { i o i o  f n)  - -  . -  ) ' + -  z .

The interfacial boundary condition is that the
velocity component normal to the internal
boundary and the surface displacement ft should
be continuous at y:0,

L - t : u r ,  h r - - h t  a t  y : Q ,  ( 4 . 2 8 )

where suffices I and II denote those quantities
belonging to the regions I and II, respectively.
This situation is schematicaliy shown in Fig. 9.

In region I (shear zone), the posed problem is
the same as case I except for the boundary con-
dition at y:0; the governing equation in regron
I is the same as (4.9) and its solution is expressed
as

h:At  Z  anz"*Bt  l ,  unzo .
r = J  o d d  n - 2  e v e n

(4 .2e)

Above equation is the same form as (4.12) but
constants A1 and 81 are determined from the
boundary conditions (4.27) and (.4.28).

In region II (rest fluid), equation (2.6) is

(4.2:7)

remain finite as

written as
, l2 i
i * + / . t F , : C ,  - t t f t : 0 ,
dy '

and its solution is

(4.30)
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i

r - -  - - - -  - - - -

I

regrcn l

Fig. 9 The model 

"ro 

"u." IL Fluid extends
to 1,+-co. Shear zone (region I) is
0<y<1 and rest f luid (region II)  is
y < 0 .

h, :  A o expt k' /  1 * F,zCz y\

- t - .8  rexP(  -kJ1-p- , :6 : r ,  ,  ( .+ .31)

where A11 and Bs are constants. From the

boundary condition at y-+ - *, i1 should have
a form as

f io:  au"a, G.32)
where ,49 is a constant and

^  l - i k J F l e r =  f o r  F r : C : ) 1 ,  1 4 . 3 3 a )

t  P f -1*4262 fo r  F ,2C2 ' -7 ,  (4 .  33b)

Of course, the right-hand side of (4.33a) gives
the same value as what (4.33b) gives in the case
where C has an imaginary part.

The interfacial boundary condition for o rs
equivalent to the continuity of ft'. Thus, using
(4.29) and (4.32), boundary conditions (4.28) are
rewritten as

F A e :  A ,  7  n a " ( - C L - L  *  U ,  I  n a " ( - C 1 - r  .
z -  3 ( o d d )  n : 0 ( e v e n )

(4 .34 )

and

Ap:A r  Z  a " ( -C ) "+B t  Z  a " ( -C ) . (4 .35 )
z : 3 ( o d d )  n =  2 ( e v e n )

From (4.34) and (4.35), we eliminate Ae to
obtain

Ar Z @+ FC)an(-C)"- '
n :  l ( o d d )

+Br  {F+  |  @+ pC)a " ( -C )2 -1 }  : 0  .
n : 3 ( o d d )

(4.36)

Substituting (,1.29) into (4.27), we obtain another
relation between ,4r and B1 as

A t  Z  n a " ( l - C ) " - l B r I  n a n ( l - C ) - 1 : 0  .
n : 3 ( o d d )  , : 2  ( e v e n )

(1. 37)

Requiring that Ar and 87 do not vanish, we
have a characteristic equation for C as

I  F ,  F , I
F(k  .  F , ' ,  C  t : l - - '  

- - ' |  
:0  ,  (4 .  38 l

l r 1  f r l

wnere

F , :  f  ( n + p C ) a " ( - C ) " - r ,
r : 3 ( o d d )

Fz :  Z  nan ( I  -C ) - t  ,
n:2(even't

Fz: f * Z (n * FC)a"( - C)n- L
z  =  3 ( o d d )

F+:  Z  na" ( l -C) " - t  .
z : 3 ( o d d )

Equation (4.38) is solved by the same method
that as used in case I to the same accuracy.

Results of the eigenvalue caiculations are
presented in Figs. 10, 11 and 12. Figs. 10(a) and

10(b) show the phase speeds C' and the growth

rates ftC; for Fr:3.5, respectively. Figs. 11(a)

and 11(b) are the same as Figs. 10(a) and 10(b)

respectively, except for Fr:5. Figs. 12(a) and

12(b) are the same as Figs. 10(a) and 10(b) re-

spectively, except for Fr:1. From these figures,

it is easily found that there are two different

types of unstable waves: one is fast to move and

siow to grow, and the other is slow to move and

fast to grow. We will call the latter unstable
waves as SGr-waves and former ones as SGz-
waves.

Comparing Figs. 10, 11, and 12 with Figs. 3

and 4, we also notice that these ft-C' relations

have similar characteristics with each other. They

may be interpreted as follows. When the wal1

at y: g is removed, almost all members of the

famity of the faster phase speed C r cnr -ut U'.-

appear, because they have more energy near that

wall and they may be greatly affected by the

wall. On the other hand the family of C-('r may

not be modifled remarkably because they have

more energy near the wall at y: 1 which exists

in this case, too. But some parts of them whose
phase speeds exceed the value C,: l /  Fr can not

remain to be neutrai, because they radiate to
y->- co as the boundary condition (4.33a) shows,
that is momentum is lost to infinity and thus
energy conversion may occur, Thus the phase

T. Satomura 1 5 9
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1 6 0

( a )

Fig. 10(a) Curves of non-dimensional
phase velocity for Fr:3.5
in case II. Solid lines are
neutral modes and dashed
lines are growth modes.

o
o  i  2  3  4  5  6  7  8  q  t n

(h)

Fig. 10(b) Curves of non-dimensional
growth rate for Fr: j.5.
Rather discrete curves and
continuously extended curves
correspond SGr_waves and
SGr-waves, respectively.

speeds must have complex values in that upper
region of the k-C, plane. On these grounds, SG2_
waves may be interpreted as the destabiiized part
af the wave famiiy C_(") whiie SG1 ma) cor_
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u l z 3 4 5 6 7 8 9 l o

ta)

Fig. 11(a) Same as Fig. 10(a),
except for Fr:5.

o 2 a 4 5 6 i . J U

(b)

Fig. i  1(b) Same as Fig. 10(b),
except for Fr:5.

respond to  (1 ,  n )  modes.  where  n :7 ,  Z ,  3 ,  .  .  . ,
in the last subsection, though the reason why
only the (1, n) could survive is not clear. Indeed,
SG1-waves have a second maximum of the sur-
face dispiacement I as a trace of the energy
concentration near l, : 0 as shown in Fig. 15,
which is a characteristic of the familv of C*(').

There exist the most unstable wave near Fr:
3.5. When Fr becomes greater or smaller (not
shown) than 3.5, the growth rate is reduced.
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o  I  2  3  4  5  6  7  I  9  t o
(a)

Fig. i2(a) Same as Fig. 10(a),
except for Fr':7.

a  ? 4 1 5  6  7 8  9  0

(b j

Fig. 12(b) Same as Fig. 10(b),
except for Fr:7.

When Fr increases, all unstable waves shift to

the longer wavelength side and the phase speeds
of SG1-waves and SGz-waves become closer as
shown in Fig. 11. Final ly (Fr:1), these two
unstable regions of the ground modes are joined
together completely as shown in Fig. 12. Simul-
taneously, the neutral solution vanishes at the
branch point of the soiution, FrC:1,. This
vanishing point is denoted by a small circle in
Fig. 12(a).

Fig. 13 shows the divergence and the vorticity

0 , V  z

Fig. 13 Amplitude of non-dimensional divergence

and vorticity for Fr:3.5 in Case IL Solid

lines are the vorticity and dashed lines are

the divergence. (a)  f t :1.9,  Cr:0.155 and

kCi:0.096 (SGr-waves).  (b)  t :3.1,  Cr:

0.319 and tCi :0.005 (SGe-wave) '

of the perturbation velocity at Fr:3.5. The

modes which are shown in Fig. 13(a) and 13(b)

correspond to the ground mode of the SGr-

waves and SG2-waves, respectively. It is evident

that divergence is dominant near the boundary

for both two waves.

To verify that these unstable waves are de-

stabilized gravity waves, the vorticity equation

and the divergence equation are derived from

(2.2)-(2.4). Then we estimate the amplitudes of

the terms in these equations. The vorticity equa-

tion is written as

=:+U j : -+  CD:o  ,  (4 .39)
ot 0x)

and the divergence equation is written as

A D  . . a D  ^  6 r  d U  |  - " ,
_ L t t _ L /  -  |  - n : \ t

,  o t  dx  d t r  ay  f r "
(4.40)

where ( is the perturbation vorticity 6u/ An-

Aui 6y-, g is ttre basic vorticity -dU/dy, D is

the. perturbation divergence and
d .  n L

.  ofr.  oy-

The results of the calculation are shov''n in

Fig. 14. From this figure, following points are

observed:
(a) Near the boundary, the second term and

the' last term of (4.39) almost cancel each other.

It means that vorticity variation due to stretch-

ing of vortex tube by the divergence maintains

the wave structure against the advection by the

fast basic flow.
(b) Near the boundary, the sum of the first

and the second terms of (4.40) balances the last

term. This is a characteristics of gravity waves,
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Fig. 15(a) and 15(b) depict the structures of
the ground modes of the SGl-waves and the SG2-
waves for Fr:3.5, respectively. As already
mentioned, these figures cleariy show that the
SGe-wave radiates to y-> - cc as gravity wave,
while the SGr-wave quickiy damps away from
the interface. Near the boundarv at y:1, the
structure of either wave is similar to that of a
gravity wave in a channei. The waves also have
desired forms appropriate to match the require-
ment of maintaining themselves against the basic
shear flow as explained in the case I.

5. Potential vorticity budget, change of zonal
mean flow, and energetics

In  th is  sec t ion ,  we w i l l  show an in te res t ing
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. . . . . . . . . . n?Q

1 _ ^
l i t  

"  ' ,

t D  . . ; f ). , . . , , . . , . .  t i . : : : :
a t  ' a r

1 _ - .
f r

Fig. 14 Absoiute values of each term of the vorticity equation and the divergence equation.
(a) Absolute values of terms of the vorticity equation for SGr-wave. Parameters
are same as Fig. 13(a). (b) Same as (a) except for SG2-waves and parameters
which are same as Fig. 13(b). (c) Same as (a) except for the terms of the divergence
equation. (d) Same as (b) except for the ter-ms of the divergence equation.

. r,i 
,,,

j,.'

aspect of the disturbance in iinear shear flows.
From (3.20) and (3.21), i t  is obvious that dis-

turbances extract their energy from the zonai
mean kinetic energy through the conversion term
due to the Reynolds stress. In the case of the
linear shear, however, this conversion term is
expressed as (4.5). From a comparison between
(4.5), (3.21), and (3.22) we see that the 'ordinary'

zonal mean kinetic energv .Es must not change,
and that the perturbation quantities can grow at
the expense of the additional energy term -86p,
and thus reduce the 'depth weighted' zonal mean
kinetic energy ^85. This is a difference from usuai
barotropically unstable waves. In order to make
this difference clearer, the tendencv of U with
time is calculated from that gf the basic potential
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On the other hand, the equation of the con-

^ - j - :  j  
- ' o

is derived from the original equations for ui, ui,

S u b s t i t u t i n g  t 3 . l  I  t  a n d  ( 5 . 1  )  i n t o  ( 5 . 1 ) .  a r r a n g -
ing each power of € and note that first order
quantities to have the form as (2.5), then we
obtain (in the linear shear zone),

O ( 1 )  : O

AQo 69r*t
- _ - _ - { l

ot  d t

where

servation of the potential vorticity,

aa aQ aa
-  l l t T - - l ' * - : t )
ot otr. oy

n.r :**X

Q < 1 )  :

n",:#(o*,#-ro#)

J--

v

1 5  ? \

(s. 3)

( 5 . 4 )
Fig l5(a) Structure of

quantities in
are the same
p : 1 . 6 5 * 0 . 2 1 i .
contour of h
locity (u, r).
0.2.

the perturbation

case II. Parameters
a s  F i g . 1 3 ( a )  a n d

Solid lines are
and arrows are ve-

Contour interval is

--:-:- 'j:r 
t

;= ) : i11151,.-

/ h \
Q  - 9 , 0 t _ r - ; 1 2 , .  _ i 2 ( 9 , ,  _  

; ,  
"  

)

I / 6 u  6 u  h d U \
- t  _ _ -  4 _  _ l

/ 1 \d r  Ay  
'  
H  dy  /

1 _
J _ ' :

t b t

Fig. 15(b) Same as Fig. 15(a), except for

r3:0.04-1.55t and the parameters
which are the same as Figs. 13(b),

vorticity and of the depth H. To do this, we use
the expansion (3.11) again and also assume that
the second order variables U(2), l/tz), vnf, [_ltzt
are independent on ,.

Then, potential vorticity Q may be expanded
as

6ut  AuI

^ o x o y
h l

( 5 . 5 )

Physically the above results are rather obvious.
Since the basic potential vorticity is uniform, no
potential vorticity can accompany the disturbance
as seen from (5.3). Then the disturbance cannot
cause any change of the zonal mean vorticity
field through the non-linear effect as shown in
(5,4). In the case of a non-divergent flow (e.g.
barotropic instability problem), it means that the
zonal mean flow and the kinetic energy associated
with i t  do not change at al l ;  hence disturbances
do not g.row. In the present problem, we have
a somewhat strange situation as explained below.
For convenience, we rewrite (5.4) as

A ALI(2) |  dLl a H(2)
1  .  

- : ; = - . -  - -

o t  o y  H a y  d t
(s. 6)

Now, upon using (2.5) and the condition that
Z(2) should be zero at the walls or y--) - :c for
unstable waves, (3.19) is rewrit ten as

AH(z) AhuAH (2)
(s .7 )

At ay

A u  r d U  A u  A { J : ,
- _ - - l -  ! : - a : l -  I

l r ^ lo x  \ a y  o y  o y  /

H + .h-  € ' � \1 t

l d U , e / 6 u  A u , h d U \- - n  
a t , - n \ i t - a y  - r o n  )

. : ' L l d u  d u  h d U t
L  - t  _ h t  _  _  _  I  _ _  I

H ' L  
" \  

6 r  A y  H  d y l

, ,  . .du - .  au,2)1_ H : . _ j _ _ H  ^  l _ t 0 1 e r 1  .
dy 0y _l

Substitute (5.7) into (5.6) and integrate with
respect y to obtain

A U '  I d U ,
a t : - n a , n u + G ( t ) '  

( 5 ' 8 )

/ { r \ where Gu) is a function of time only, and we
\J r/ used the fact that dU/dy is a constant in the
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shear zone. For convenience, we consider the

situation in case I, then, from the symmetry ot

the model, G(r) should be zero. Then from (5.7)

and (5.8) we have

^ A
J - t H u ' - r H ' z  I J 1 :  -  .  t u h t ) .  ( 5 . 9 )
ot oy

This implies that the zonal mean momentum

may change, despite the fact that '0(t) does not

change. F{owever, if the perturbation disappears

at the final stage, U should return to the initial

distr ibution, because 0:const. Then 'zonal mean

acceleration by waves' does not take place in the

present  p rob lem.  However  i f  we cons ider  i i  a t

a part of the zonal mean momentum, it can

change as mentioned previously (cf.3'21 and

3.22). Redistribution of physical quantities such

as momentum or mass by the waves may be one

of the interests of instability problems. Although

the unstable waves found in this paper have

strange characteristics in their energetics, they

have a possibility to redistribute the momentum

of the basic flow. To show this, assume the

situation that the energy conversion from the

basic flow to the perturbation is compensated by

the energy loss due to viscosity which is con-

sidered to act only on the perturbation vorticity.

but not to affect the surface dispiacement /r.

(So far we consider an initial tendency of the

effect of the viscosity, these assumptions may

have no great difficulty, because the viscosity

affect the surface displacement ft not directly but

through the change of velocity field.) From these

assumptions and (5.1), the tendency of the second

order potential vorticity may be written as

Vol.  59,  No.

(5. 12)

With the fact that Qt\) 
-  -  ( l /  H)(dU / dv). ' -O'

above inequality implies that the absolute vaiue

of the basic potential vorticity will be reduced.
It means that the basic shear wiil be weakened
and the redistribution of the momentum can

From another point of view, this redistributton

is also suggested. The perturbation momentum

ia is calculated from the eigenfunction and rs

found to be negative near y: l  (g:U'ou*) and

is  pos i t i ve  near  y :0  (U:U, , in ) .  Then.  the  bas ic

shear wiil decrease, if we assume that the waves

will be dissipated by viscosity but the perturba-

tion momentum will remain where it is.

Of course, to prove strictly what are discussed

above, a finite amplitude theory with the ellect

of the viscosity should be required. We do not

extend our discussion to the finite amplitude

theory.
The right-hand side of (5.8) is calculated

explicitly and it is shown schematically in Fig.

16. From Fig. 16 only, i t  seems as i t  the
'ordinary' mean kinetic energy En will decrease.

The energetics shows, however, Ee must be con-

stant with time. This apparent contradiction may

be avoided by considering the variation of the

mean surface. He). because definition of Eg

inciudes that effect. This is also shown as fol-

lows: The explicit form of the left-hand side

of (3.23a) is

A f 1
j  \ * t r# ru2  |  2H.UU(2)dy  .  (5 .13)
o t  J / .

Substi tut ing (4.8a) and (5.7) into (5.13), and

integrating by parts to rewrite the left-hand side
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a _
_  o ( : )  \ o
o t

aQ(2 )  |  A
-  - - -  h ( ) t . L )

At  
-H 

At  
" " "

t -  t d u a h ,
H 2 ' "  

'  
H t  d y  0 t

1 a -
- H z  

0 t ' " '
( 5 . 1 0 )

where the constancy of ft with time is used.
Since the basic vorticity -dU/dy is negative,
the stretching of the vortex tube by the ft creates
negative vorticity. Thus a correlation between
h and ( may be negative, and

a _
-  c h ) o ,
ot

( 5 . 1 1 )

because dissipation reduces the absolute value
of the perturbation vorticity. Substituting (5.11)
into (5.10), we obtain an inequality

Fig. 16 The tendency of the variation of the basrc
flow. Solid line is the basic flow, U, and
dashed line is the modified basic florv
U+I2UQ)' But the value of e is set to
be arbitrary large for convenience to show
the effect of Ue).
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of  (3 .23a)  as
;  I  f  -  o L  2

+ \ E B d y : \ y l h r - H  -  I a v .  t 5 .  l 4 t
o t )  -  

J ' \  o I  /

Equation (5.8) implies that the right-hand side

i5. i4) should be zero. Thus, even i f  the zonal

mean shear changes as in the case of barotropic

instabitity, the compensating effect by the eleva-

tion of the mean surface will make the 'ordinarv'

mean kinetic energy E6 unchange.

6. Summary and discussions

Using an anaiytical solution of the linearized
forms of the shallow water equations, we have
studied the stabiiity of plane Couette flows.

The characteristics cf unstable '.vaves are sum-
marized:

(a) In the case I, there are unstabie gravity
waves (SG-waves). The instability occurs in
discrete intervals of the zonal wave number, and
they are interpreted to be produced as a result
of the mixing of two gravity wave modes which
would propagate opposite directions if the basic
flow did not exist. A strong shear (Fr>2) can
cause the mode mixing.

(b) In the case II, there exist two difterent
types of unstable waves. One is the almost
trapped but radiating waves; part of their energy
radiates to y->-:o (SG2-waves). The other rs
the trapped waves (SG1-waves). The SG2-waves
rre interpreted as destabiiized parts of a family
ol waves which are neutra.l in the case I. The
SG1-waves are interpreted as one of the unstable
wave series in the case I modifled bv the un-
bounded fluid.

(c) Near the boundaries, the vorticity pattern
of the SG, SG1 and SG2-waves :rre maintained
by stretching and shrinking of the vortex tube
due to the divergence. In the divergence equation,
these waves show the characteristics of gravity
waves  near  the  boundar ies .

(d) These SG, SGr and SG2-waves obtain
their energy from the 'additional" mean energy

huU and nct from the 'ordinary' mean energy
1 / 2  H ( 2 ) L P +  H U U Q ) .

(e) Perturbation potential vorticitv equals zero,
and the mean potential vorticitv does not change
with time.

These instabilities does not change the 'ordi-

nary' mean kinetic energy ffi€a€ndii,m.
The SGg-waves might be the same, in essence,

as the unstable waves which are found by Broad-
bent and Moore (1979) and the second mode of
Blumen et a!. (1975). But, since Broadbent e/ a/.
(1979) discussed neither structures nor energetics

sufficiently, simiiarity between the two waves rs
not so obvious. In addition to this vagueness of
the simiiarity, they found unstable waves ev.dn
in the case where Mach number M{I. The
reason why subsonic flow is unstable is not so
clear. Their model is compressible homoentropic
fluid, and they used the cylindrical coordinates
and assumed that the basic vortex has uniform
vorticity in the core and zero outside the core.

This means that a pressure gradient along the
radial direction exists and it corresponds to an
inclination of the undisturbed surlace in our
shallow water model. We only suppose that these
dillerences might break our necessary condition
4 .7 \ .

In view of our results which show that gravity

waves are unstable for Fr) 1 even without a
point of inflection, the second mode of Biumen
et al. (I915) may be interpreted as unstable
accoustic waves which are similar to ours and
have little connection with the point of inflection
essentially. In order to connect our results with
theirs straightforwardly, we examined the stability
of the basic flow which has a r;rofile as

(  I  1 { v
t - '

U { y ) : l  y  0 < y < 1  .  ( 6 .  1 )

l o  Y ( 1
The resuits of the calculations of the eigen-

values verify the above interpretation. But, rn
contrast with the results of Blumen et al., the
high wave number cut off of the sccond unstable
mode in k-Fr plane is not found in this model.
Further results of this model will be presented

elsewhere.
Our instabilities are found only for Fr)l. It

should be noted that possibility of meeting this
condition in actual geophysical fluids is expected
rather iarge, because, in a stably stratified fluid,
the mean depth of the shallow water, H, may be
replaced by the verticai scale of the waves, I1",
and thus Fr:Uo/ NH,, where N is the Brunt-
V?ilslilii frequency. Thus defined Fr may be able
to exceed 1. In concluding the paper, the author
wishes to mention one interesting appiication.
In the upper atmosphere of Venus where the

4-day circulation is dominant, a shear in the

angular velocity is expected to exist (cf. Matsuda,
1980), and those unstable waves may exist.
Indeed, i f  we use a model as

(  v  0 ( v ( l  -
U ( Y t : \  r  

,  - "  
- . : .  ( 6 ' 2 \-  t _ y  _ r < y : ! 0

with boundary conditions

u : 0  a t  y : 1  a n d  y :  -  1  ,  ( 6 .  3 )
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where all perturbation quantities are assumed to
have a form as (2.5). Boundarv condit ions are

u : O  a t  y : 0  a n d  y : L  ,  ( A . 3 )

where I is a channel width.
Then dispersion relation is obtained as

r  n - i
c : - y ' g H t .  l - - + .  ( A . 4 1'  V  r  - , . -

and u, z', and I are obtained as

u : A
inn cos(nry,t L)

e l k G - e / , )
Lk { I  - (c ' � /  gH) }

eigenfunctions will be symmetric about the line

1 l :0 .  Thus  the  pa t te rn  in  the  domain  0<y<1
is the same as Fig. 8 and the other haif is a
mirror image of it with respect the line y:0.
This looks like the Y shape disturbance in the
Venus atmosphere (see, for example, Belton et
al. 1976). Further, the tilting of the equal bright-
ness contour of this disturbance is the same direc-
tion of the shear of the angular velocity. Thus
this disturbance may not be of a rotational motion
type but a gravity wave type, as pointed in the
last part of the subsection 4-2. Here we only
point out the similarity between their shapes.
Further comparison is left for a study using a
more realistic spherical model. If the unstable
waves found in this paper exist, they may be a
mechanism of large horizontal eddy viscosity
which is assumed in some modeis of the 4-day
circulat ion (e.9. Gierasch, I975; Matsuda, 1980).
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Appendix: Gravity waves in a channel

Here we derive structures of neutral gravity
waves in a channel for reader's convenience for
comparing with the structures of the unstable
waves which is found in this paper.

Shallow water equations for gravity waves in
a rest fluid are written as

6 ,  _  n A h  : n
d t  o  6 x

Au Ah

ar  +s  a "  
: 0 ,  (A .  1 )

A h  . - / 6 u  6 u t
-  - H  {  .  + = -  } : 0 .o I  \ 0 , r  0 t  /

El iminating a and h from (A.1), we obtain
single equation for z- as

u : A s i n f r , n  ,  r * ' , - r t
L '

.  i cn : t  cos (n - v i L \
h: A :- : ---- !  eik r  r t  '-  ' ^  

L k l I - | c ' � ,  g H ) ]

( A . 5 )

o , ' t  - - 1 r ' 1 " ' - o H l D .
dy "

where ,4 is a constant.
Results of the calculation of the structure by

(A.5) are shown in Fig. A1.

va11z/,/z//v'//2,/&'///z72272?/4,.//27/?"4/2./z/z/z//z/////1?"2

vt

X

Fig. A1 Structure of neutrai gravity wave.
Solid lines are contours of li and
arrows are veiocity (2, z'). Contour
interval is 0.2.
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