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1. Introduction

In a previous paper (Satomura, 1981; here-
after referred to as I), the stability problem of
two types of shear flows was studied. One type
of shear flow was the plane Couette flow bounded
in both sides by two rigid walls, and the other
was the same flow but is unboundcd in one side
to connect to a rest fluid which extends to
infinity. One of the purposes of I was to clarify
the second mode instability which was first found
by Blumen et al. (1975). Since they used a
hyperbolic tangent profile of a compressible fluid
as a basic shear flow, the physical mechanism of
destabilization for the second mode was not
clear owing to the existence of a point of inflec-
tion. A conclusion of I is that those waves are
gravity waves (or acoustic waves in the case of
a compressible fluid) destabilized by the basic
shear flow. The other conclusion is that, in
essence, the unstable waves do not arise from
the existence of an inflection point but they are
destabilized by the linear shear under the presence
of divergence. The other purpose of I was to
examine possibility of generation of gravity
waves which radiate from the shear zone. The
possibility was demonstrated.

Since the basic flows examined in I are bounded
in one or two sides, the comparison of the
results of I with Drazin and Davey (1977), which
is an extension of Blumen et al. (1975), is not
straightforward. In the present note, we will
obtain eigenvalues for a piecewise-linear shear
flow unbounded in both sides, which is regarded
as an approximation of a hyperbolic tangent flow,
and compare them with the results of Drazin and
Davey (1977).

2. Eigenvalue problem

We consider a stability of a piecewise-linear
plane parallel flow with a velocity
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in a shal loq water. Then i t  fol lows (cf.  I)  that
the stabi l i tr  of this basic f low is governed by
the equations
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The boundary condit ions are that f t  is f ini te or
radiating from the shear zone to ). -) -t-. The
interfacial boundary condit ions are that the
velocity component normal to the internal
boundary, a, and the surface displacement. f t ,
shou ld  be  cont inuous  a t  y :0  and 1 . :1 .  Here
we use dimensionless variables throughout. and
assume that the perturbation surface displacc-
ment has the form as ft(y)exp[i t( . i ]-Cr) l  in rerms
of the posit ive wavenumber I and contplex phase
speed C:C,*iCi. The Froude number Fr is
defined as the rat io of the characrerist ic velocity
of the basic flow U6 to the phase speed of gravity
wave "/gH, where H is rhe mean depth of the
shallow water.

As in I ,  general solurion of (3) is expressed as

h : A Z  a " ( y  - C ) . -  B  I  a n ( y - C ) "  ,  ( 4 )
n = 3  o d d  a = 0  i e v € n )

where I and B arc constants and a's defined by
(4.13) of I .  Solut ions of (2) and (4) which satisfy
the boundarv condit ions at lyi+ oo are writ ten
as

f t : 1 *s i * t  f o r  1<y  ,
h:  A-e i  I  for  y  (0 ,

where ,4 - and A- are constants and

P  *  :  -  k  l l  -  F r ' �Q  -  C1z1 r t z ,
p - : k { l  -  F t 2 c 2 l t / 2  .
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We choose branches of square roots in the r ight-
hand sides of (7) and (8) so as to make real parts
of p + and ,:  -  non-posit ive and non-negative,
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lespectively. These branches of square roots also

satisfy the radiat ion cotr. l i t ion where l f  j - t  *.

Then the charactcrist ic equation is deduced from

the requ i rement  tha t  a l l  cons tan ts ,  A ,  B ,  A .

and ,4 do not vanish when sclut ions (4)-(6)

satisfy interfacial boundary condit ions. The

nrethod of solving the characterist ic equation and

thc accuracy of the eigenvalues are the same as

those in  L

3. Results

Figs. I  and 2 display distr ibutions of phase

speed JC, and growth rate kCion the k-Fr plane'

respectively, where JC,.:  0.5 - C,l .  Figs. 3-7

show graphs of :JC,. and frCi as a function of

wavenumber k for five typical values of Fr'

respectively.
From these figures it is easily found that there

are two dif ferent t-vpes of unstable waves; one

has a phase speed C,.:0.5 and the largest growth

Fig.  1 Di f ference of  phase speed f rom 0'5,  i .e. ,

lC r : \ 0 . 5 -C , - .  Mu l t i va l ued  l t ns tab le  r eg ion

is indicated by shade. A stat ionary unstable

mode ( /C, :0 and Ci :0)  exists in a region

between a th ick sol id l ine IC, :O and the

Fr axis and outs ide the dot ted region.  The

thin sol id l ines depict  isol ines ol  1JC,. .

Growth rate AC;. Mult i-valued un-
stable region is indicated by shade. The
thin sol id l ines depict isol ines of kCi.
Thick sol id l ine depicts C;:0.

ratc at Fr:o, i .c.,  non-divergent l imit (mode I).
The other appears only for Fr)I and i ts phase

speed C. is not 0.5 (mode II).  Obviously, the
former type is associated with an inf lect ion point
(barotropic instability), and the latter can exist
by the effect of divergence and basic shear flow.
Mode I has two different eigenvalues at the same
k and Fr  fo r  1 .83Fr32.7 .  For  Fr51 .8  mode I
is single-valued and for 2.7 3Fr it disappears.
It is worth noting that propagating neutral modes
exist for Fr31 .8, and, from Fig.5, a propagating
neutral mode exist at Fr-1.8 even for smaller
wavenumber than the cut off  wavenumber of
mode I .

u  2  4  6 k

Fig. 3 Graphs of /C,:19.5-C,l  and ftC1 for
Fr-0^5. Sol id l ine depicts lC,. This
mode of lcr+ 0 is neutral.  Chain
line denotes growth rate kCi tlf
stat ionary mode (1C,.:0).

2 4 u k

Fig. 4 Same as Fig. 3 except for Fr:1.5.
Dashed line depicts growth rate liC;
of travel l ing mode (: lC"*0).
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as Fig. 4 except for
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Fig. 6 Same as Fig. 4 except for
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Fig. 7 Same as Fig. 4 except for Fr:3.0.

Fig. 8 Real part of eigenfunction ft  for stat ionary
mode and travel l ing mode. Sol id l ine depicts
t rave l l ing  mode:  Fr -2 .2 ,  f r :0 .7 ,  lC , :
0 . 1 8 3 ,  k C i : 0 . 0 2 9 ,  r i  + :  - 0 . 5 1 0 - 0 . 0 6 1 i ,

19 - :0.085-0.788i. Dashed l ine depicts
s ta t ionary  mode:  Fr :0 .5 ,  k :0 .75 ,  i lC , :O,
AC,:6. 130. p * :a0.732-0.024i.

0.5 t rJC,..  Since the solut ions in the rest f luids
have a form as (5) and (6), the rvave u,hich has
a fas te r  phase speed C. :0 .5*JC,  i s  s inuso ida l
fo r  y -<0  and exponent ia l  fo r ,1 ' r :  l .  For  the  wave
of slower phase speed C',:0.-5 - J( ' , .  i ts property
is reversed.

When we compare  F igs .  l -7  w i th  F igs .  l -3
o f  Draz in  e t  a l .  (  1977t  and F ig .  I  o f  B lumen
et  u l .  ( l  9751 ' " .  u  e  no t icc  some s imi la r i t ies  and
dilTerences. Ther arc suntmarized as fol lows:

a)  Dependencc  o f  g rowth  ra te  o f  mode I  on
I and I ' r  is sinri lar to that in the case of hyper-
bol ic tangent f low. I t  is reasonable, becausc
nrode I cr ists only for small  k and piecewise-
l incar  f lou  ( l )  i s  a  good approx i ; r ' ra t ion  o f  U:
tanh( r ' )  fo r  smal l  k  as  Esch (1957)  showed.

b) Str iking characterist ics such as mode bifur-
cation and mult ivalued nature of C which were
found by Drazin et al.  (1977) are also found
near Fr:2 in our shear f low.

'1'  Note that cur definit ions of nondimension:r l  wave-
number and Froude number di lTer fronr those of
Drazin er al.  (1977) and Blumen (r al.  |  1975) by
a factor two.

Journal  of  the Meteorological  Society of  Japan

k
'  F r :  1 . 8 .

k

Fr :2 .0 .

Fig. 8 shows structures of mode I and II .  This
f igure indicates that mode I is quickly damped
away from shear zone and mode II  propagates
from one side of shear zone to inf ini ty. Of course,
mode I l  contains a pair of waves which have
the same growth rate but whose phase speeds
differ from 0.5 by the same value, i .e.,  C.:

\\ \
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c)  In  the  case o f  (1 ) ,  non-s ingu la r  neut ra l
nlrrdcs are continuous to unstable mode and they
crist for, at least, f ini te range of k-C, plane.
\\ 'hen Fr exceeds l ,  larger wavenumber part be-
comes unstable. Thus 'high-wave r lumber cutoff '

does not appear for mode II .  In the case of
hyperbol ic tangent f low, singular neutral mode
(see Mi les ,  1961) ,  wh ich  is  cont inuous  to  uns tab le
non-singular mode, is not continuous to any

other singular neutral modes as Yih (1974) sug-
gested. Instead of the singular neutral mode,

only the continuous-spectrum solut ion may exist
outside the marginal ly stable cur' . 'e in k-Fr (or

k-M) plane as commented by Drazin et al.  (1977).

By evaluating (4.2O') of I .  we confirmed the fact
that, in the case of hyperbol ic tangent f low, no
normal-mode eigen-solut ion exists outside the
rrnstable domain in k-Fr plane (not shown).

The reason why the behaviour of eigen-solut ion
di lTers from that of Drazin et oi.  (197' l)  in a
region of large wavenumber of k-Fr plane is

understood as fol lows: The equation (7) of
Blumen (1970) is transformed to a normal form

d 2 f
(  n  - c )  , '  ,  :  - [ ( u  - c l u "  - 2 u ' :

ay"

-  a2( t1  -  c )2  11  -  M ' (u  c ) ' l | l ( e )
where . l :  i  I  (u-c) and other symbols are the
s a m e  a s  B l u m e n  ( 1 9 7 0 ) .  I n  t h e  c a s e  o f  i :
tanh(l ' ) ,  the f irst and the second terms of the
right-hand side of (9) can be neglected comparing
the last term when wavenumber a is very large
lnd r7:c. Then a simple WKB solut ion of (9)
.horvs that the effect of the shear only changes
thc 'rravenumber' in y direct ion and neutral nor-
nral nr,-rde remains neutral,  i f  i t  exists. In the
case rr i  the piecewise-l inear f low, however, [ i"
beconrcs inf ini tely large (delta function) at y:9
and r ' :  |  .  Thus, the f irst term in the r ight-hand
side oi (9) cannot be neglected. l t  means that

the effect of shear (or the effect of abrupt change
of shear at interfaces) is important even when
wavenumber becomes very large. In this case,
neutral normal-mode solut ions have a possibi l i ty

to be Ci * 0 and in fact they are unstable for

Fr)1. Physical ly, i t  is rather obvious. The scale
of the wave in y direct ion, say Lo, might be small
i f  the scale in r direct ion is small .  Thus, smooth-
ly varying basic f low wil l  vary only sl ightly in

one 'wavelength' by .L, and waves mav not be

affected by the basic shear remarkably. But in

the case of piecewise-l inear f low, cven i f  Lo be-

comes very small ,  waves may feel abrupt change
of the basic shear and may be destabilized.
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